40 research outputs found

    The concept of strong and weak virtual reality

    Full text link
    We approach the virtual reality phenomenon by studying its relationship to set theory, and we investigate the case where this is done using the wellfoundedness property of sets. Our hypothesis is that non-wellfounded sets (hypersets) give rise to a different quality of virtual reality than do familiar wellfounded sets. We initially provide an alternative approach to virtual reality based on Sommerhoff's idea of first and second order self-awareness; both categories of self-awareness are considered as necessary conditions for consciousness in terms of higher cognitive functions. We then introduce a representation of first and second order self-awareness through sets, and assume that these sets, which we call events, originally form a collection of wellfounded sets. Strong virtual reality characterizes virtual reality environments which have the limited capacity to create only events associated with wellfounded sets. In contrast, the more general concept of weak virtual reality characterizes collections of virtual reality mediated events altogether forming an entirety larger than any collection of wellfounded sets. By giving reference to Aczel's hyperset theory we indicate that this definition is not empty, because hypersets encompass wellfounded sets already. Moreover, we argue that weak virtual reality could be realized in human history through continued progress in computer technology. Finally, we reformulate our characterization into a more general framework, and use Baltag's Structural Theory of Sets (STS) to show that within this general hyperset theory Sommerhoff's first and second order self-awareness as well as both concepts of virtual reality admit a consistent mathematical representation.Comment: 17 pages; several edits in v

    The causal structure of spacetime is a parameterized Randers geometry

    Full text link
    There is a by now well-established isomorphism between stationary 4-dimensional spacetimes and 3-dimensional purely spatial Randers geometries - these Randers geometries being a particular case of the more general class of 3-dimensional Finsler geometries. We point out that in stably causal spacetimes, by using the (time-dependent) ADM decomposition, this result can be extended to general non-stationary spacetimes - the causal structure (conformal structure) of the full spacetime is completely encoded in a parameterized (time-dependent) class of Randers spaces, which can then be used to define a Fermat principle, and also to reconstruct the null cones and causal structure.Comment: 8 page
    corecore