2,205 research outputs found

    Polygon Exploration with Time-Discrete Vision

    Full text link
    With the advent of autonomous robots with two- and three-dimensional scanning capabilities, classical visibility-based exploration methods from computational geometry have gained in practical importance. However, real-life laser scanning of useful accuracy does not allow the robot to scan continuously while in motion; instead, it has to stop each time it surveys its environment. This requirement was studied by Fekete, Klein and Nuechter for the subproblem of looking around a corner, but until now has not been considered in an online setting for whole polygonal regions. We give the first algorithmic results for this important algorithmic problem that combines stationary art gallery-type aspects with watchman-type issues in an online scenario: We demonstrate that even for orthoconvex polygons, a competitive strategy can be achieved only for limited aspect ratio A (the ratio of the maximum and minimum edge length of the polygon), i.e., for a given lower bound on the size of an edge; we give a matching upper bound by providing an O(log A)-competitive strategy for simple rectilinear polygons, using the assumption that each edge of the polygon has to be fully visible from some scan point.Comment: 28 pages, 17 figures, 2 photographs, 3 tables, Latex. Updated some details (title, figures and text) for final journal revision, including explicit assumption of full edge visibilit

    Complexity of the General Chromatic Art Gallery Problem

    Full text link
    In the original Art Gallery Problem (AGP), one seeks the minimum number of guards required to cover a polygon PP. We consider the Chromatic AGP (CAGP), where the guards are colored. As long as PP is completely covered, the number of guards does not matter, but guards with overlapping visibility regions must have different colors. This problem has applications in landmark-based mobile robot navigation: Guards are landmarks, which have to be distinguishable (hence the colors), and are used to encode motion primitives, \eg, "move towards the red landmark". Let χG(P)\chi_G(P), the chromatic number of PP, denote the minimum number of colors required to color any guard cover of PP. We show that determining, whether χG(P)≤k\chi_G(P) \leq k is \NP-hard for all k≥2k \geq 2. Keeping the number of colors minimal is of great interest for robot navigation, because less types of landmarks lead to cheaper and more reliable recognition

    Peierls substitution in the energy dispersion of a hexagonal lattice

    Full text link
    The method of the Peierls substitution in studying the magnetic subband structure of a hexagonal lattice is re-examined. Several errors in the formalism of a couple of recent papers are pointed out and rectified so as to describe the effect of the magnetic field pertinently.Comment: 3 pages (two-columns), 2 EPS figures, submitted to J. Phys.: Condens. Matte
    • …
    corecore