114 research outputs found

    INTEGRATED ESTIMATION OF REPRODUCTIVE HEALTH IN SCHOOLGIRLS OF IRKUTSK

    Get PDF
    We studied physical and sexual development of schoolgirls living in Irkutsk. It was shown that somatic pathology plays important role in reproductive health development

    Static and resonant properties of decorated square kagome lattice compound KCu7_7(TeO4_4)(SO4_4)5_5Cl

    Full text link
    The magnetic subsystem of nabokoite, KCu7_7(TeO4_4)(SO4_4)5_5Cl, is constituted by buckled square kagome lattice of copper decorated by quasi-isolated Cu2+^{2+} ions. This combination determines peculiar physical properties of this compound evidenced in electron spin resonance (ESR) spectroscopy, dielectric permittivity ε\varepsilon, magnetization MM and specific heat CpC_p measurements. At lowering temperature, the magnetic susceptibility χ=M/H\chi = M/H passes through broad hump at about 150 K inherent for low-dimensional magnetic systems and evidences sharp peak at antiferromagnetic phase transition at TN=3.2T_N = 3.2 K. The Cp(T)C_p(T) curve also exhibits sharp peak at TNT_N readily suppressed by magnetic field and additional peak-like anomaly at Tpeak=5.7T_\textrm{peak}= 5.7 K robust to magnetic field. The latter can be ascribed to low-lying singlet excitations filling the singlet-triplet gap in magnetic excitation spectrum of the square kagome lattice [J.Richter, O.Derzhko and J.Schnack, Phys. Rev. B 105, 144427 (2022)]. According to position of TpeakT_\textrm{peak}, the leading exchange interaction parameter JJ in nabokoite is estimated to be about 60K. ESR spectroscopy provides indications that antiferromagnetic structure below TNT_N is non-collinear. These complex thermodynamic and resonant properties signal the presence of two weakly coupled magnetic subsystems in nabokoite, namely spin-liquid with large singlet-triplet gap and antiferromagnet represented by decorating ions. Separate issue is the observation of antiferroelectric-type behavior in ε\varepsilon at low temperatures, which tentatively reduces the symmetry and partially lifts frustration of magnetic interactions of decorating copper ions with buckled square kagome lattice.Comment: 13 pages, 13 figure

    Applications of Site-Specific Labeling to Study HAMLET, a Tumoricidal Complex of α-Lactalbumin and Oleic Acid

    Get PDF
    umor cells), and its tumoricidal activity has been well established.-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules.We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity

    Transcriptomic profiling of host-parasite interactions in the microsporidian <i>Trachipleistophora hominis</i>

    Get PDF
    BACKGROUND: Trachipleistophora hominis was isolated from an HIV/AIDS patient and is a member of a highly successful group of obligate intracellular parasites. METHODS: Here we have investigated the evolution of the parasite and the interplay between host and parasite gene expression using transcriptomics of T. hominis-infected rabbit kidney cells. RESULTS: T. hominis has about 30 % more genes than small-genome microsporidians. Highly expressed genes include those involved in growth, replication, defence against oxidative stress, and a large fraction of uncharacterised genes. Chaperones are also highly expressed and may buffer the deleterious effects of the large number of non-synonymous mutations observed in essential T. hominis genes. Host expression suggests a general cellular shutdown upon infection, but ATP, amino sugar and nucleotide sugar production appear enhanced, potentially providing the parasite with substrates it cannot make itself. Expression divergence of duplicated genes, including transporters used to acquire host metabolites, demonstrates ongoing functional diversification during microsporidian evolution. We identified overlapping transcription at more than 100 loci in the sparse T. hominis genome, demonstrating that this feature is not caused by genome compaction. The detection of additional transposons of insect origin strongly suggests that the natural host for T. hominis is an insect. CONCLUSIONS: Our results reveal that the evolution of contemporary microsporidian genomes is highly dynamic and innovative. Moreover, highly expressed T. hominis genes of unknown function include a cohort that are shared among all microsporidians, indicating that some strongly conserved features of the biology of these enormously successful parasites remain uncharacterised. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1989-z) contains supplementary material, which is available to authorized users

    Clinical features of post-COVID-19 period. Results of the international register “Dynamic analysis of comorbidities in SARS-CoV-2 survivors (AKTIV SARS-CoV-2)”. Data from 6-month follow-up

    Get PDF
    Aim. To study the clinical course specifics of coronavirus disease 2019 (COVID-19) and comorbid conditions in COVID-19 survivors 3, 6, 12 months after recovery in the Eurasian region according to the AKTIV register. Material and methods.The AKTIV register was created at the initiative of the Eurasian Association of Therapists. The AKTIV register is divided into 2 parts: AKTIV 1 and AKTIV 2. The AKTIV 1 register currently includes 6300 patients, while in AKTIV 2 — 2770. Patients diagnosed with COVID-19 receiving in- and outpatient treatment have been anonymously included on the registry. The following 7 countries participated in the register: Russian Federation, Republic of Armenia, Republic of Belarus, Republic of Kazakhstan, Kyrgyz Republic, Republic of Moldova, Republic of Uzbekistan. This closed multicenter register with two nonoverlapping branches (in- and outpatient branch) provides 6 visits: 3 in-person visits during the acute period and 3 telephone calls after 3, 6, 12 months. Subject recruitment lasted from June 29, 2020 to October 29, 2020. Register will end on October 29, 2022. A total of 9 fragmentary analyzes of the registry data are planned. This fragment of the study presents the results of the post-hospitalization period in COVID-19 survivors after 3 and 6 months. Results. According to the AKTIV register, patients after COVID-19 are characterized by long-term persistent symptoms and frequent seeking for unscheduled medical care, including rehospitalizations. The most common causes of unplanned medical care are uncontrolled hypertension (HTN) and chronic coronary artery disease (CAD) and/or decompensated type 2 diabetes (T2D). During 3- and 6-month follow-up after hospitalization, 5,6% and 6,4% of patients were diagnosed with other diseases, which were more often presented by HTN, T2D, and CAD. The mortality rate of patients in the post-hospitalization period was 1,9% in the first 3 months and 0,2% for 4-6 months. The highest mortality rate was observed in the first 3 months in the group of patients with class II-IV heart failure, as well as in patients with cardiovascular diseases and cancer. In the pattern of death causes in the post-hospitalization period, following cardiovascular causes prevailed (31,8%): acute coronary syndrome, stroke, acute heart failure. Conclusion. According to the AKTIV register, the health status of patients after COVID-19 in a serious challenge for healthcare system, which requires planning adequate health system capacity to provide care to patients with COVID-19 in both acute and post-hospitalization period

    Tunneling properties of hybrid magnetoelectric nanoscale devices

    No full text
    We present the simple model of a hybrid magnetoelectric nanoscale device which is based on the transfer matrix formalism. In the presented model the one-electron tunneling properties of such structures are analyzed in the ballistic regime. Spin selectivity was also investigated and found to be absent in these structures. The current-voltage characteristics as well as the dependencies of resistance on the magnetic field strength for described system are presented. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

    On the solution of a “2D Coulomb + Aharonov-Bohm” problem: oscillator strengths in the discrete spectrum and scattering

    No full text
    In this paper we present an exact analytic solution of the Schrödinger equation both in the discrete and continuous spectra for the combination of a 2D Coulomb potential and the Aharonov-Bohm flux. We analyze the influence of the Aharonov-Bohm flux on the energy spectrum of such a system and show that its presence leads to the broadening of the electron density in the bound states with the given value of the principal quantum number. We have shown that the scattering phase shift, which determines the S-matrix, can be represented as a sum of the Aharonov-Bohm scattering phase, first obtained by Henneberger, and a “modified” 2D Coulomb phase. We have noticed, that the Aharonov-Bohm scattering phase has a full analogy with the “quantum defect” for such a system. We have shown also, that the presence of the Aharonov-Bohm flux affects the radiation spectrum of the electron in this case, and this fact is demonstrated by calculations of the corresponding oscillator strengths. The explicit analytic expression for the scattering cross section on such a system is found in the frame of the eikonal approach. Obtained formula contains the two exact limiting cases, namely, the “pure” 2D Coulomb scattering as well as the “pure” Aharonov-Bohm effect. The mutual influence of a 2D Coulomb potential and the Aharonov-Bohm flux is also discussed

    S6 Permutein Shows That the Unusual Target Topology is Not Responsible for the Absence of Rigid Tertiary Structure in De Novo Protein Albebetin

    No full text
    Ribosomal protein S6 from Thermus thermophilus was modified to form the unusual unique topology designed earlier for a de novo protein albebetin. The S6 gene was cloned, sequenced and circularly permutated by means of genetic engineering methods. The permutated gene was expressed in Escherichia coli and the permutein was isolated and investigated by means of circular dichroism, fluorescence spectroscopy and scanning microcalorimetry. The permutated protein revealed a pronounced secondary structure close to that of the wild type S6 protein and a rigid tertiary structure possessing cooperative temperature melting. It means that the unusual new topology of albebetin is compatible with a rigid tertiary structure, it may be realized in natural proteins and it is not responsible for the absence of rigid structure in albebetin
    corecore