1,319 research outputs found
Die verbrokkelende wêreld in die prosakuns van John Miles
Die meeste literêre kritici is dit eens dat John Miles met sy debuutbundel kort-kortverhale, Liefs nie op straat nie (1970) , en sy daaropvolgende roman, Okker bestel twee toebvoodjies (1973), iets nuut tot die Afrikaanse prosakuns toegevoeg het. Nuut dan in die sin dat sy dirékte betrokkenheid by en uitdieping van die "angs van menswees" in hierdie huidige bestek van geweld doelbewus wegbeweeg van die estetiek van 'n romankuns wat slegs in beperk te kring geldigheid het
Complexity of vaginal microflora as analyzed by PCR denaturing gradient gel electrophoresis in a patient with recurrent bacterial vaginosis.
OBJECTIVE: Gardnerella vaginalis has long been the most common pathogen associated with bacterial vaginosis (BV). We aimed to test our hypothesis that symptoms and signs of BV do not necessarily indicate colonization by this organism, and often will not respond to standard metronidazole or clindamycin treatment. METHODS: Using a relatively new molecular tool, PCR denaturing gradient gel electrophoresis (DGGE), the vaginal microflora of a woman with recalcitrant signs and symptoms of BV was investigated over a 6-week timeframe. RESULTS: The vagina was colonized by pathogenic enterobacteriaceae, staphylococci and Candida albicans. The detection of the yeast by PCR-DGGE is particularly novel and enhances the ability of this tool to examine the true nature of the vaginal microflora. The patient had not responded to antifungal treatment, antibiotic therapy targeted at anaerobic Gram-negative pathogens such as Gardnerella, nor daily oral probiotic intake of Lactobacillus rhamnosus GG. The failure to find the GG strain in the vagina indicated it did not reach the site, and the low counts of lactobacilli demonstrated that therapy with this probiotic did not appear to influence the vaginal flora. CONCLUSIONS: BV is not well understood in terms of its causative organisms, and further studies appear warranted using non-culture, molecular methods. Only when the identities of infecting organisms are confirmed can effective therapy be devized. Such therapy may include the use of probiotic lactobacilli, but only using strains which confer a benefit on the vagina of pre- and postmenopausal women
The Origin and Universality of the Stellar Initial Mass Function
We review current theories for the origin of the Stellar Initial Mass
Function (IMF) with particular focus on the extent to which the IMF can be
considered universal across various environments. To place the issue in an
observational context, we summarize the techniques used to determine the IMF
for different stellar populations, the uncertainties affecting the results, and
the evidence for systematic departures from universality under extreme
circumstances. We next consider theories for the formation of prestellar cores
by turbulent fragmentation and the possible impact of various thermal,
hydrodynamic and magneto-hydrodynamic instabilities. We address the conversion
of prestellar cores into stars and evaluate the roles played by different
processes: competitive accretion, dynamical fragmentation, ejection and
starvation, filament fragmentation and filamentary accretion flows, disk
formation and fragmentation, critical scales imposed by thermodynamics, and
magnetic braking. We present explanations for the characteristic shapes of the
Present-Day Prestellar Core Mass Function and the IMF and consider what
significance can be attached to their apparent similarity. Substantial
computational advances have occurred in recent years, and we review the
numerical simulations that have been performed to predict the IMF directly and
discuss the influence of dynamics, time-dependent phenomena, and initial
conditions.Comment: 24 pages, 6 figures. Accepted for publication as a chapter in
Protostars and Planets VI, University of Arizona Press (2014), eds. H.
Beuther, R. S. Klessen, C. P. Dullemond, Th. Hennin
Variance Calculations and the Bessel Kernel
In the Laguerre ensemble of N x N (positive) hermitian matrices, it is of
interest both theoretically and for applications to quantum transport problems
to compute the variance of a linear statistic, denoted var_N f, as N->infinity.
Furthermore, this statistic often contains an additional parameter alpha for
which the limit alpha->infinity is most interesting and most difficult to
compute numerically. We derive exact expressions for both lim_{N->infinity}
var_N f and lim_{alpha->infinity}lim_{N->infinity} var_N f.Comment: 7 pages; resubmitted to make postscript compatibl
A target repurposing approach identifies N-myristoyltransferase as a new candidate drug target in filarial nematodes
Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5-10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM) in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis
Relativistic Bohmian trajectories of photons via weak measurements
Bohmian mechanics is a nonlocal hidden-variable interpretation of quantum
theory which predicts that particles follow deterministic trajectories in
spacetime. Historically, the study of Bohmian trajectories has mainly been
restricted to nonrelativistic regimes due to the widely held belief that the
theory is incompatible with special relativity. Here we derive expressions for
the relativistic velocity and spacetime trajectories of photons in a
Michelson-Sagnac-type interferometer. The trajectories satisfy
quantum-mechanical continuity and the relativistic velocity addition rule. Our
new velocity equation is operationally defined in terms of weak measurements of
momentum and energy. We finally propose a modified Alcubierre metric which
could give rise to these trajectories within the paradigm of general
relativity.Comment: 11 pages, 6 figures. Published in Nature Communication
Finite-size effects and intermittency in a simple aging system
We study the intermittent dynamics and the fluctuations of the dynamic
correlation function of a simple aging system. Given its size and its
coherence length , the system can be divided into independent
subsystems, where , and is the dimension of space.
Each of them is considered as an aging subsystem which evolves according to
an activated dynamics between energy levels.
We compute analytically the distribution of trapping times for the global
system, which can take power-law, stretched-exponential or exponential forms
according to the values of and the regime of times considered. An effective
number of subsystems at age , , can be defined, which
decreases as increases, as well as an effective coherence length,
, where characterizes the trapping
times distribution of a single subsystem. We also compute the probability
distribution functions of the time intervals between large decorrelations,
which exhibit different power-law behaviours as increases (or
decreases), and which should be accessible experimentally.
Finally, we calculate the probability distribution function of the two-time
correlator.
We show that in a phenomenological approach, where is replaced by the
effective number of subsystems , the same qualitative behaviour
as in experiments and simulations of several glassy systems can be obtained.Comment: 15 pages, 6 figures, published versio
Low-rank multi-parametric covariance identification
We propose a differential geometric construction for families of low-rank
covariance matrices, via interpolation on low-rank matrix manifolds. In
contrast with standard parametric covariance classes, these families offer
significant flexibility for problem-specific tailoring via the choice of
"anchor" matrices for the interpolation. Moreover, their low-rank facilitates
computational tractability in high dimensions and with limited data. We employ
these covariance families for both interpolation and identification, where the
latter problem comprises selecting the most representative member of the
covariance family given a data set. In this setting, standard procedures such
as maximum likelihood estimation are nontrivial because the covariance family
is rank-deficient; we resolve this issue by casting the identification problem
as distance minimization. We demonstrate the power of these differential
geometric families for interpolation and identification in a practical
application: wind field covariance approximation for unmanned aerial vehicle
navigation
- …