433 research outputs found
Interdependence of magnetism and superconductivity in the borocarbide TmNi2B2C
We have discovered a new antiferromagnetic phase in TmNi2B2C by neutron
diffraction. The ordering vector is Q_A = (0.48,0,0) and the phase appears
above a critical in-plane magnetic field of 0.9 T. The field was applied in
order to test the assumption that the zero-field magnetic structure at Q_F =
(0.094,0.094,0) would change into a c-axis ferromagnet if superconductivity
were destroyed. We present theoretical calculations which show that two effects
are important: A suppression of the ferromagnetic component of the RKKY
exchange interaction in the superconducting phase, and a reduction of the
superconducting condensation energy due to the periodic modulation of the
moments at the wave vector Q_A
Temperature Dependence of the Flux Line Lattice Transition into Square Symmetry in Superconducting LuNiBC
We have investigated the temperature dependence of the H || c flux line
lattice structural phase transition from square to hexagonal symmetry, in the
tetragonal superconductor LuNi_2B_2C (T_c = 16.6 K). At temperatures below 10 K
the transition onset field, H_2(T), is only weakly temperature dependent. Above
10 K, H_2(T) rises sharply, bending away from the upper critical field. This
contradicts theoretical predictions of H_2(T) merging with the upper critical
field, and suggests that just below the H_c2(T)-curve the flux line lattice
might be hexagonal.Comment: 4 pages, 3 figure
Spin Susceptibility of the Topological Superconductor UPt3 from Polarized Neutron Diffraction
Experiment and theory indicate that UPt3 is a topological superconductor in
an odd-parity state, based in part from temperature independence of the NMR
Knight shift. However, quasiparticle spin-flip scattering near a surface, where
the Knight shift is measured, might be responsible. We use polarized neutron
scattering to measure the bulk susceptibility with H||c, finding consistency
with the Knight shift but inconsistent with theory for this field orientation.
We infer that neither spin susceptibility nor Knight shift are a reliable
indication of odd-parity
Exploring the fragile antiferromagnetic superconducting phase in CeCoIn5
CeCoIn5 is a heavy fermion Type-II superconductor which exhibits clear
indications of Pauli-limited superconductivity. A variety of measurements give
evidence for a transition at high magnetic fields inside the superconducting
state, when the field is applied either parallel to or perpendicular to the c
axis. When the field is perpendicular to the c axis, antiferromagnetic order is
observed on the high-field side of the transition, with a magnetic wavevector
of (q q 0.5), where q = 0.44 reciprocal lattice units. We show that this order
remains as the magnetic field is rotated out of the basal plane, but the
associated moment eventually disappears above 17 degrees, indicating that the
anomalies seen with the field parallel to the c axis are not related to this
magnetic order. We discuss the implications of this finding.Comment: Accepted Physical Review Letters, September 2010. 4 pages, 4 figure
Magnetic field induced orientation of superconducting MgB crystallites determined by X-ray diffraction
X-ray diffraction studies of fine polycrystalline samples of MgB in the
superconducting state reveal that crystals orient with their \emph{c}-axis in a
plane normal to the direction of the applied magnetic field. The MgB
samples were thoroughly ground to obtain average grain size 5 - 10 m in
order to increase the population of free single crystal grains in the powder.
By monitoring Bragg reflections in a plane normal to an applied magnetic field
we find that the powder is textured with significantly stronger (\emph{0,0,l})
reflections in comparison to (\emph{h,k,0}), which remain essentially
unchanged. The orientation of the crystals with the \emph{ab}-plane parallel to
the magnetic field at all temperatures below demonstrates that the sign
of the torque under magnetic field does not alter, in disagreement with current
theoretical predictions
Pauli Paramagnetic Effects on Vortices in Superconducting TmNi2B2C
The magnetic field distribution around the vortices in TmNi2B2C in the
paramagnetic phase was studied experimentally as well as theoretically. The
vortex form factor, measured by small-angle neutron scattering, is found to be
field independent up to 0.6 Hc2 followed by a sharp decrease at higher fields.
The data are fitted well by solutions to the Eilenberger equations when
paramagnetic effects due to the exchange interaction with the localized 4f Tm
moments are included. The induced paramagnetic moments around the vortex cores
act to maintain the field contrast probed by the form factor.Comment: 4 pages, 4 figure
Field Dependence of the Superconducting Basal Plane Anisotropy of TmNi2B2C
The superconductor TmNi2B2C possesses a significant four-fold basal plane
anisotropy, leading to a square Vortex Lattice (VL) at intermediate fields.
However, unlike other members of the borocarbide superconductors, the
anisotropy in TmNi2B2C appears to decrease with increasing field, evident by a
reentrance of the square VL phase. We have used Small Angle Neutron Scattering
measurements of the VL to study the field dependence of the anisotropy. Our
results provide a direct, quantitative measurement of the decreasing
anisotropy. We attribute this reduction of the basal plane anisotropy to the
strong Pauli paramagnetic effects observed in TmNi2B2C and the resulting
expansion of vortex cores near Hc2.Comment: 8 pages, 6 figures, 1 tabl
- …