4,657 research outputs found
Impact of Facilities on Technology Leadership
School facilities have largely been designed for limited technology, usually chalk boards and overhead projectors
Simple Vortex States in Films of Type-I Ginzburg-Landau Superconductor
Sufficiently thin films of type-I superconductor in a perpendicular magnetic
field exhibit a triangular vortex lattice, while thick films develop an
intermediate state. To elucidate what happens between these two regimes,
precise numerical calculations have been made within Ginzburg-Landau theory at
and 0.25 for a variety of vortex lattice structures with one flux
quantum per unit cell. The phase diagram in the space of mean induction and
film thickness includes a narrow wedge in which a square lattice is stable,
surrounded by the domain of stability of the triangular lattice at thinner
films/lower fields and, on the other side, rectangular lattices with
continuously varying aspect ratio. The vortex lattice has an anomalously small
shear modulus within and close to the square lattice phase.Comment: 21 pages, 6 figure
On the Complexity of -Closeness Anonymization and Related Problems
An important issue in releasing individual data is to protect the sensitive
information from being leaked and maliciously utilized. Famous privacy
preserving principles that aim to ensure both data privacy and data integrity,
such as -anonymity and -diversity, have been extensively studied both
theoretically and empirically. Nonetheless, these widely-adopted principles are
still insufficient to prevent attribute disclosure if the attacker has partial
knowledge about the overall sensitive data distribution. The -closeness
principle has been proposed to fix this, which also has the benefit of
supporting numerical sensitive attributes. However, in contrast to
-anonymity and -diversity, the theoretical aspect of -closeness has
not been well investigated.
We initiate the first systematic theoretical study on the -closeness
principle under the commonly-used attribute suppression model. We prove that
for every constant such that , it is NP-hard to find an optimal
-closeness generalization of a given table. The proof consists of several
reductions each of which works for different values of , which together
cover the full range. To complement this negative result, we also provide exact
and fixed-parameter algorithms. Finally, we answer some open questions
regarding the complexity of -anonymity and -diversity left in the
literature.Comment: An extended abstract to appear in DASFAA 201
Environmental monitoring of Mycobacterium bovis in badger feces and badger sett soil by real-time PCR, as confirmed by immunofluorescence, immunocapture, and cultivation
Real-time PCR was used to detect and quantify Mycobacterium bovis cells in
naturally infected soil and badger faeces. Immunomagnetic capture,
immunofluorescence and selective culture confirmed species identification and cell
viability. These techniques will prove useful for monitoring M. bovis in the
environment and for elucidating transmission routes between wildlife and cattle
Recommended from our members
EHMTI-0178. CGRP monoclonal antibody LY2951742 for the prevention of migraine: a phase 2, randomized, double-blind, placebo-controlled study
Performance of an environmental test to detect Mycobacterium bovis infection in badger social groups
A study by Courtenay and others (2006) demonstrated that
the probability of detecting Mycobacterium bovis by PCR in
soil samples from the spoil heaps of main badger setts correlated
with the prevalence of excretion (infectiousness) of
captured badgers belonging to the social group. It has been
proposed that such a test could be used to target badger culling
to setts containing infectious animals (Anon 2007). This
short communication discusses the issues surrounding this
concept, with the intention of dispelling any misconceptions
among relevant stakeholders (farmers, policy makers and
conservationists)
The nonlinear time-dependent response of isotactic polypropylene
Tensile creep tests, tensile relaxation tests and a tensile test with a
constant rate of strain are performed on injection-molded isotactic
polypropylene at room temperature in the vicinity of the yield point. A
constitutive model is derived for the time-dependent behavior of
semi-crystalline polymers. A polymer is treated as an equivalent network of
chains bridged by permanent junctions. The network is modelled as an ensemble
of passive meso-regions (with affine nodes) and active meso-domains (where
junctions slip with respect to their positions in the bulk medium with various
rates). The distribution of activation energies for sliding in active
meso-regions is described by a random energy model. Adjustable parameters in
the stress--strain relations are found by fitting experimental data. It is
demonstrated that the concentration of active meso-domains monotonically grows
with strain, whereas the average potential energy for sliding of junctions and
the standard deviation of activation energies suffer substantial drops at the
yield point. With reference to the concept of dual population of crystalline
lamellae, these changes in material parameters are attributed to transition
from breakage of subsidiary (thin) lamellae in the sub-yield region to
fragmentation of primary (thick) lamellae in the post-yield region of
deformation.Comment: 29 pages, 12 figure
Theory and design of InGaAsBi mid-infrared semiconductor lasers: type-I quantum wells for emission beyond 3 m on InP substrates
We present a theoretical analysis and optimisation of the properties and
performance of mid-infrared semiconductor lasers based on the dilute bismide
alloy InGaAsBi, grown on conventional (001) InP
substrates. The ability to independently vary the epitaxial strain and emission
wavelength in this quaternary alloy provides significant scope for band
structure engineering. Our calculations demonstrate that structures based on
compressively strained InGaAsBi quantum wells (QWs)
can readily achieve emission wavelengths in the 3 -- 5 m range, and that
these QWs have large type-I band offsets. As such, these structures have the
potential to overcome a number of limitations commonly associated with this
application-rich but technologically challenging wavelength range. By
considering structures having (i) fixed QW thickness and variable strain, and
(ii) fixed strain and variable QW thickness, we quantify key trends in the
properties and performance as functions of the alloy composition, structural
properties, and emission wavelength, and on this basis identify routes towards
the realisation of optimised devices for practical applications. Our analysis
suggests that simple laser structures -- incorporating
InGaAsBi QWs and unstrained ternary
InGaAs barriers -- which are compatible with established
epitaxial growth, provide a route to realising InP-based mid-infrared diode
lasers.Comment: Submitted versio
From ‘other’ to involved: User involvement in research: An emerging paradigm
This article has been made available through the Brunel Open Access Publishing Fund. Copyright @ 2013 The Author(s).
This is an Open Access article. Non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly attributed, cited, and is not altered, transformed, or built upon in any way, is permitted. The moral rights of the named author(s) have been asserted.This article explores the issue of ‘othering’ service users and the role that involving them, particularly in social policy and social work research may play in reducing this. It takes, as its starting point, the concept of ‘social exclusion’, which has developed in Europe and the marginal role that those who have been included in this construct have played in its development and the damaging effects this may have. The article explores service user involvement in research and is itself written from a service user perspective. It pays particular attention to the ideological, practical, theoretical, ethical and methodological issues that such user involvement may raise for research. It examines problems that both research and user involvement may give rise to and also considers developments internationally to involve service users/subjects of research, highlighting some of the possible implications and gains of engaging service user knowledge in research and the need for this to be evaluated
An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker
We present an estimate of net CO2 exchange between the terrestrial biosphere and the atmosphere across North America for every week in the period 2000 through 2005. This estimate is derived from a set of 28,000 CO2 mole fraction observations in the global atmosphere that are fed into a state-of-the-art data assimilation system for CO2 called CarbonTracker. By design, the surface fluxes produced in CarbonTracker are consistent with the recent history of CO2 in the atmosphere and provide constraints on the net carbon flux independent from national inventories derived from accounting efforts. We find the North American terrestrial biosphere to have absorbed –0.65 PgC/yr (1 petagram = 10^15 g; negative signs are used for carbon sinks) averaged over the period studied, partly offsetting the estimated 1.85 PgC/yr release by fossil fuel burning and cement manufacturing. Uncertainty on this estimate is derived from a set of sensitivity experiments and places the sink within a range of –0.4 to –1.0 PgC/yr. The estimated sink is located mainly in the deciduous forests along the East Coast (32%) and the boreal coniferous forests (22%). Terrestrial uptake fell to –0.32 PgC/yr during the large-scale drought of 2002, suggesting sensitivity of the contemporary carbon sinks to climate extremes. CarbonTracker results are in excellent agreement with a wide collection of carbon inventories that form the basis of the first North American State of the Carbon Cycle Report (SOCCR), to be released in 2007. All CarbonTracker results are freely available at http://carbontracker.noaa.gov
- …