2,325 research outputs found
Spin Freezing in Geometrically Frustrated Antiferromagnets with Weak Disorder
We investigate the consequences for geometrically frustrated antiferromagnets
of weak disorder in the strength of exchange interactions. Taking as a model
the classical Heisenberg antiferromagnet with nearest neighbour exchange on the
pyrochlore lattice, we examine low-temperature behaviour. We show that random
exchange generates long-range effective interactions within the extensively
degenerate ground states of the clean system. Using Monte Carlo simulations, we
find a spin glass transition at a temperature set by the disorder strength.
Disorder of this type, which is generated by random strains in the presence of
magnetoelastic coupling, may account for the spin freezing observed in many
geometrically frustrated magnets.Comment: 4 pages, 5 figure
Low Velocity Granular Drag in Reduced Gravity
We probe the dependence of the low velocity drag force in granular materials
on the effective gravitational acceleration (geff) through studies of spherical
granular materials saturated within fluids of varying density. We vary geff by
a factor of 20, and we find that the granular drag is proportional to geff,
i.e., that the granular drag follows the expected relation Fprobe = {\eta}
{\rho}grain geff dprobe hprobe^2 for the drag force, Fprobe on a vertical
cylinder with depth of insertion, hprobe, diameter dprobe, moving through
grains of density {\rho}grain, and where {\eta} is a dimensionless constant.
This dimensionless constant shows no systematic variation over four orders of
magnitude in effective grain weight, demonstrating that the relation holds over
that entire range to within the precision of our data
Semiclassical degeneracies and ordering for highly frustrated magnets in a field
We discuss ground state selection by quantum fluctuations in frustrated
magnets in a strong magnetic field. We show that there exist dynamical
symmetries -- one a generalisation of Henley's gauge-like symmetry for
collinear spins, the other the quantum relict of non-collinear weathervane
modes -- which ensure a partial survival of the classical degeneracies. We
illustrate these for the case of the kagome magnet, where we find zero-point
energy differences to be rather small everywhere except near the collinear
`up-up-down` configurations, where there is rotational but not translational
symmetry breaking. In the effective Hamiltonian, we demonstrate the presence of
a term sensitive to a topological `flux'. We discuss the connection of such
problems to gauge theories by casting the frustrated lattices as medial
lattices of appropriately chosen simplex lattices, and in particular we show
how the magnetic field can be used to tune the physical sector of the resulting
gauge theories.Comment: 10 pages, 8 figure
Thermodynamic Study of Excitations in a 3D Spin Liquid
In order to characterize thermal excitations in a frustrated spin liquid, we
have examined the magnetothermodynamics of a model geometrically frustrated
magnet. Our data demonstrate a crossover in the nature of the spin excitations
between the spin liquid phase and the high-temperature paramagnetic state. The
temperature dependence of both the specific heat and magnetization in the spin
liquid phase can be fit within a simple model which assumes that the spin
excitations have a gapped quadratic dispersion relation.Comment: 5 figure
Field induced transitions in a kagome antiferromagnet
The thermal order by disorder effect in magnetic field is studied for a
classical Heisenberg antiferromagnet on the kagome lattice. Using analytical
arguments we predict a unique H-T phase diagram for this strongly frustrated
magnet: states with a coplanar and a uniaxial triatic order parameters
respectively at low and high magnetic fields and an incompressible collinear
spin-liquid state at a one-third of the saturation field. We also present the
Monte Carlo data which confirm existence of these phases.Comment: 4 pages, 2 figures, accepted versio
Measurements of Nanoscale Domain Wall Flexing in a Ferromagnetic Thin Film
We use the high spatial sensitivity of the anomalous Hall effect in the
ferromagnetic semiconductor Ga1-xMnxAs, combined with the magneto-optical Kerr
effect, to probe the nanoscale elastic flexing behavior of a single magnetic
domain wall in a ferromagnetic thin film. Our technique allows position
sensitive characterization of the pinning site density, which we estimate to be
around 10^14 cm^{-3}. Analysis of single site depinning events and their
temperature dependence yields estimates of pinning site forces (10 pN range) as
well as the thermal deactivation energy. Finally, our data hints at a much
higher intrinsic domain wall mobility for flexing than previously observed in
optically-probed micron scale measurements
Magnetic susceptibility of diluted pyrochlore and SCGO antiferromagnets
We investigate the magnetic susceptibility of the classical Heisenberg
antiferromagnet with nearest-neighbour interactions on the geometrically
frustrated pyrochlore lattice, for a pure system and in the presence of
dilution with nonmagnetic ions. Using the fact that the correlation length in
this system for small dilution is always short, we obtain an approximate but
accurate expression for the magnetic susceptibility at all temperatures. We
extend this theory to the compound SrCr_{9-9x}Ga_{3+9x}O_{19} (SCGO) and
provide an explanation of the phenomenological model recently proposed by
Schiffer and Daruka [Phys. Rev. B56, 13712 (1997)].Comment: 4 pages, Latex, 4 postscript figures automatically include
Structural, orbital, and magnetic order in vanadium spinels
Vanadium spinels (ZnV_2O_4, MgV_2O_4, and CdV_2O_4) exhibit a sequence of
structural and magnetic phase transitions, reflecting the interplay of lattice,
orbital, and spin degrees of freedom. We offer a theoretical model taking into
account the relativistic spin-orbit interaction, collective Jahn-Teller effect,
and spin frustration. Below the structural transition, vanadium ions exhibit
ferroorbital order and the magnet is best viewed as two sets of
antiferromagnetic chains with a single-ion Ising anisotropy. Magnetic order,
parametrized by two Ising variables, appears at a tetracritical point.Comment: v3: streamlined introductio
Quenched crystal field disorder and magnetic liquid ground states in Tb2Sn2-xTixO7
Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb2B2O7
with B=Ti and Sn display a novel magnetic ground state in the presence of
strong B-site disorder, characterized by a low susceptibility and strong spin
fluctuations to temperatures below 0.1 K. These materials have been studied
using ac-susceptibility and muSR techniques to very low temperatures, and
time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably,
neutron spectroscopy of the Tb3+ crystal field levels appropriate to at high
B-site mixing (0.5 < x < 1.5 in Tb2Sn2-xTixO7) reveal that the doublet ground
and first excited states present as continua in energy, while transitions to
singlet excited states at higher energies simply interpolate between those of
the end members of the solid solution. The resulting ground state suggests an
extreme version of a random-anisotropy magnet, with many local moments and
anisotropies, depending on the precise local configuration of the six B sites
neighboring each magnetic Tb3+ ion.Comment: 6 pages, 6 figure
Effects of Fe doping in La1/2Ca1/2MnO3
The effect of Fe doping in the Mn site on the magnetic, transport and
structural properties of polycrystalline La1/2Ca1/2MnO3 was studied. Doping
with low Fe concentration (< 10%) strongly affects electrical transport and
magnetization. Long range charge order is disrupted even for the lowest doping
level studied (~2%). For Fe concentration up to 5% a ferromagnetic state
develops at low temperature with metallic like conduction and thermal
hysteresis. In this range, the Curie temperature decreases monotonously as a
function of Fe doping. Insulating behavior and a sudden depression of the
ferromagnetic state is observed by further Fe doping.Comment: 2 pages, presented at ICM2000, to appear in JMM
- …