7,210 research outputs found
On non- solutions to the Seiberg-Witten equations
We show that a previous paper of Freund describing a solution to the
Seiberg-Witten equations has a sign error rendering it a solution to a related
but different set of equations. The non- nature of Freund's solution is
discussed and clarified and we also construct a whole class of solutions to the
Seiberg-Witten equations.Comment: 8 pages, Te
Quantum critical transport, duality, and M-theory
We consider charge transport properties of 2+1 dimensional conformal field
theories at non-zero temperature. For theories with only Abelian U(1) charges,
we describe the action of particle-vortex duality on the
hydrodynamic-to-collisionless crossover function: this leads to powerful
functional constraints for self-dual theories. For the n=8 supersymmetric,
SU(N) Yang-Mills theory at the conformal fixed point, exact
hydrodynamic-to-collisionless crossover functions of the SO(8) R-currents can
be obtained in the large N limit by applying the AdS/CFT correspondence to
M-theory. In the gravity theory, fluctuating currents are mapped to fluctuating
gauge fields in the background of a black hole in 3+1 dimensional anti-de
Sitter space. The electromagnetic self-duality of the 3+1 dimensional theory
implies that the correlators of the R-currents obey a functional constraint
similar to that found from particle-vortex duality in 2+1 dimensional Abelian
theories. Thus the 2+1 dimensional, superconformal Yang Mills theory obeys a
"holographic self duality" in the large N limit, and perhaps more generally.Comment: 35 pages, 4 figures; (v2) New appendix on CFT2, corrected
normalization of gauge field action, added ref
Superevolution
Usually, in supersymmetric theories, it is assumed that the time-evolution of
states is determined by the Hamiltonian, through the Schr\"odinger equation.
Here we explore the superevolution of states in superspace, in which the
supercharges are the principal operators. The superevolution equation is
consistent with the Schr\"odinger equation, but it avoids the usual degeneracy
between bosonic and fermionic states. We discuss superevolution in
supersymmetric quantum mechanics and in a simple supersymmetric field theory.Comment: 23 page
Model for self-tuning the cosmological constant
The vanishing cosmological constant in the four dimensional space-time is
obtained in a 5D Randall-Sundrum model with a brane (B1) located at . The
matter fields can be located at the brane. For settling any vacuum energy
generated at the brane to zero, we need a three index antisymmetric tensor
field with a specific form for the Lagrangian. For the self-tuning
mechanism, the bulk cosmological constant should be negative.Comment: LaTeX file of 4 pages, to appear in Phys. Rev. Let
A representation formula for maps on supermanifolds
In this paper we analyze the notion of morphisms of rings of superfunctions
which is the basic concept underlying the definition of supermanifolds as
ringed spaces (i.e. following Berezin, Leites, Manin, etc.). We establish a
representation formula for all morphisms from the algebra of functions on an
ordinary manifolds to the superalgebra of functions on an open subset of
R^{p|q}. We then derive two consequences of this result. The first one is that
we can integrate the data associated with a morphism in order to get a (non
unique) map defined on an ordinary space (and uniqueness can achieved by
restriction to a scheme). The second one is a simple and intuitive recipe to
compute pull-back images of a function on a manifold by a map defined on a
superspace.Comment: 23 page
Learning from Minimum Entropy Queries in a Large Committee Machine
In supervised learning, the redundancy contained in random examples can be
avoided by learning from queries. Using statistical mechanics, we study
learning from minimum entropy queries in a large tree-committee machine. The
generalization error decreases exponentially with the number of training
examples, providing a significant improvement over the algebraic decay for
random examples. The connection between entropy and generalization error in
multi-layer networks is discussed, and a computationally cheap algorithm for
constructing queries is suggested and analysed.Comment: 4 pages, REVTeX, multicol, epsf, two postscript figures. To appear in
Physical Review E (Rapid Communications
Dynamic ductile to brittle transition in a one-dimensional model of viscoplasticity
We study two closely related, nonlinear models of a viscoplastic solid. These
models capture essential features of plasticity over a wide range of strain
rates and applied stresses. They exhibit inelastic strain relaxation and steady
flow above a well defined yield stress. In this paper, we describe a first step
in exploring the implications of these models for theories of fracture and
related phenomena. We consider a one dimensional problem of decohesion from a
substrate of a membrane that obeys the viscoplastic constitutive equations that
we have constructed. We find that, quite generally, when the yield stress
becomes smaller than some threshold value, the energy required for steady
decohesion becomes a non-monotonic function of the decohesion speed. As a
consequence, steady state decohesion at certain speeds becomes unstable. We
believe that these results are relevant to understanding the ductile to brittle
transition as well as fracture stability.Comment: 10 pages, REVTeX, 12 postscript figure
Signed zeros of Gaussian vector fields-density, correlation functions and curvature
We calculate correlation functions of the (signed) density of zeros of
Gaussian distributed vector fields. We are able to express correlation
functions of arbitrary order through the curvature tensor of a certain abstract
Riemann-Cartan or Riemannian manifold. As an application, we discuss one- and
two-point functions. The zeros of a two-dimensional Gaussian vector field model
the distribution of topological defects in the high-temperature phase of
two-dimensional systems with orientational degrees of freedom, such as
superfluid films, thin superconductors and liquid crystals.Comment: 14 pages, 1 figure, uses iopart.cls, improved presentation, to appear
in J. Phys.
de Sitter Thermodynamics: A glimpse into non equilibrium
In this article is shown that the thermodynamical evolution of a
Schwarzschild de Sitter space is the evaporation of its black hole. The result
is extended in higher dimensions to Lovelock theories of gravity with a single
positive cosmological constant
Elastic forces that do no work and the dynamics of fast cracks
Elastic singularities such as crack tips, when in motion through a medium
that is itself vibrating, are subject to forces orthogonal to the direction of
motion and thus impossible to determine by energy considerations alone. This
fact is used to propose a universal scenario, in which three dimensionality is
essential, for the dynamic instability of fast cracks in thin brittle
materials.Comment: 8 pages Latex, 1 Postscript figur
- …