1,420 research outputs found

    Density-Temperature-Softness Scaling of the Dynamics of Glass-forming Soft-sphere Liquids

    Full text link
    The principle of dynamic equivalence between soft-sphere and hard-sphere fluids [Phys. Rev. E \textbf{68}, 011405 (2003)] is employed to describe the interplay of the effects of varying the density n, the temperature T, and the softness (characterized by a softness parameter {\nu}^{-1}) on the dynamics of glass-forming soft-sphere liquids in terms of simple scaling rules. The main prediction is that the dynamic parameters of these systems, such as the {\alpha}-relaxation time and the long-time self-diffusion coefficient, depend on n, T, and {\nu} only through the reduced density n^\ast \equiv n{\sigma}^{3}_{HS}(T, {\nu}),where the effective hard-sphere diameter {\sigma}_{HS}(T, {\nu}) is determined, for example, by the Andersen-Weeks-Chandler condition for soft-sphere-hard-sphere structural equivalence. A number of scaling properties observed in recent simulations involving glass-forming fluids with repulsive short range interactions are found to be a direct manifestation of this general dynamic equivalence principle. The self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics is shown to accurately capture these scaling rule

    General Non-equilibrium Theory of Colloid Dynamics

    Full text link
    A non-equilibrium extension of Onsager's canonical theory of thermal fluctuations is employed to derive a self-consistent theory for the description of the statistical properties of the instantaneous local concentration profile n(r,t) of a colloidal liquid in terms of the coupled time evolution equations of its mean value n(r,t) and of the covariance {\sigma}(r,r';t) \equiv of its fluctuations {\delta}n(r, t) = n(r, t) - n(r, t). These two coarse-grained equations involve a local mobility function b(r, t) which, in its turn, is written in terms of the memory function of the two-time correlation function C(r, r' ; t, t') \equiv <{\delta}n(r, t){\delta}n(r',t')>. For given effective interactions between colloidal particles and applied external fields, the resulting self-consistent theory is aimed at describing the evolution of a strongly correlated colloidal liquid from an initial state with arbitrary mean and covariance n^0(r) and {\sigma}^0(r,r') towards its equilibrium state characterized by the equilibrium local concentration profile n^(eq)(r) and equilibrium covariance {\sigma}^(eq)(r,r'). This theory also provides a general theoretical framework to describe irreversible processes associated with dynamic arrest transitions, such as aging, and the effects of spatial heterogeneities

    Simplified Self-Consistent Theory of Colloid Dynamics

    Full text link
    One of the main elements of the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics [Phys. Rev. E {\bf 62}, 3382 (2000); ibid {\bf 72}, 031107 (2005)] is the introduction of exact short-time moment conditions in its formulation. The need to previously calculate these exact short-time properties constitutes a practical barrier for its application. In this note we report that a simplified version of this theory, in which this short-time information is eliminated, leads to the same results in the intermediate and long-time regimes. Deviations are only observed at short times, and are not qualitatively or quantitatively important. This is illustrated by comparing the two versions of the theory for representative model systems.Comment: 1 text archive, 3 figure

    Statistical properties of the GALEX spectroscopic stellar sample

    Full text link
    The GALEX General Data Release 4/5 includes 174 spectroscopic tiles, obtained from slitless grism observations, for a total of more than 60,000 ultraviolet spectra. We have determined statistical properties of the sample of GALEX stars. We have defined a suitable system of spectroscopic indices, which measure the main mid-UV features at the GALEX low spectral resolution and we have employed it to determine the atmospheric parameters of of stars in the range 4500<Teff<9000 K. Our preliminary results indicate that the sample is formed by a majority of main sequence F- and G-type stars, with metallicity [M/H]>-1 dex.Comment: 9 pages, 9 figures, accepted for publication in Astrophysics & Space Science, UV universe special issu

    Decadal variability 2010-2021 of zooplankton community at the Guadalquivir estuary (southern Spain)

    Get PDF
    A Long Term Ecological Research Program has been monitoring the Guadalquivir estuary meso- and macro- zooplankton community monthly since January 2010. As an important nursery area for many marine species (fish and crustacean) from the Gulf of Cadiz, whose juveniles and recruits depend on zooplankton as main prey, understanding how abiotic and biotic factors determine zooplankton community structure itÂŽs necessary to unreveal recruitment variability. We sampled throughout the whole salinity gradient, 2 locations, the two diurnal ebb and flood tides during the new moon days using a 100 ÎŒm zooplankton net. Zooplankton community is mainly composed by copepods and mysids. While the exotic Acartia tonsa calanoid copepod is the most abundant specie by abundance, mysid Mesopodopsis slabberi contribute the most to total biomass, followed by mysids Rhopalophthalmus tartessicus and Neomysis integer. Other abundant groups were copepods Acartia bifilosa and Acartia clausii, Calanipeda aquaedulcis, Paracalanus parvus and Acanthocyclops robustus, cladocera Pleopis polyphaemoides, together with veliger larvae, Cirripeda and Ostracoda, and Decapoda larvae. About total biodiversity, we found up to 183 species, estimating a total mean Species Richness of 9.7 (minimum 2- maximum 33) per sample, mean Shannon Diversity Index 3.27, Pielou Evenness 0.50 and mean betadiversity 0.630. While copepods area abundant form fall to early spring and summer, mysid density peaks form spring to fall. Community is structured by Salinity, but Temperature, Turbidity, Nitrate, Nitrite and Dissolved Oxygen were also important variables leading spatio-temporal variability, mainly when estuary recives high freshwater discharges from Alcala del RĂ­o dam

    The Galactic evolution of phosphorus

    Full text link
    As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P I lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra.We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. The spectra are analysed with one-dimensional model-atmospheres computed in Local Thermodynamic Equilibrium (LTE). The line formation computations are performed assuming LTE. The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S]=0.10+- 0.10. We succeed in taking an important step towards the understanding of the chemical evolution of phosphorus in the Galaxy. However, the observed rise in the P/Fe abundance ratio is steeper than predicted by Galactic chemical evolution model model developed by Kobayashi and collaborators. Phosphorus appears to evolve differently from the light odd-Z elements sodium and aluminium. The constant value of [P/S] with metallicity implies that P production is insensitive to the neutron excess, thus processes other than neutron captures operate. We suggest that proton captures on 30Si and alpha captures on $27Al are possibilities to investigate. We see no clear distinction between our results for stars with planets and stars without any detected planet.Comment: To be published on A&

    Oxidative Stress and Parkinson’s Disease: Effects on Environmental Toxicology

    Get PDF
    Epidemiological studies have found an increased risk of Parkinson’s disease (PD) with environmental factors such as exposure to substances derived from industrial processes, use of agrochemicals, or living in a rural environment. The hypothesis that certain environmental toxins could be the source of the EP is supported by the discovery that chemicals such as herbicides paraquat, diquat, and the fungicide maneb are selectively toxic in nigrostriatal dopaminergic neurons. Also, one of the insecticides produced by plants, such as rotenone, and by-product of the synthesis of synthetic heroin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) can be reproduced in animal models where neurochemicals, histopathological, and clinical characteristic of PD can be found. Interestingly, there are similarities in the chemical structure of paraquat and MPTP. Recent evidence exhibited that inflammation and oxidative stress play an essential role in the development of PD. So, in our laboratory we found that in an animal model melatonin decreases the products of lipid oxidation, nitric oxide metabolites, and the activity of cyclooxygenase 2, which are induced by an intraperitoneal injection of MPTP. This suggests that the neuroprotective effects of melatonin are partially attributed to its antioxidant scavenging and anti-inflammatory action

    Multiple Sclerosis and Its Relationship with Oxidative Stress, Glutathione Redox System, ATPase System, and Membrane Fluidity

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) with a focus on inflammation, demyelination, and damage to axons leading to neurological deficits. MS pathology is associated with excessive reactive oxygen species (ROS) and generation of reactive nitrogen species (RNS), causing oxidative/nitrosative stress. Deregulation of glutathione homeostasis and alterations in glutathione‐dependent enzymes are implicated in MS. Reactive oxygen species enhance both monocyte adhesion and migration across brain endothelial cells. In addition, ROS can activate the expression of the nuclear transcription factor‐kappa, which upregulates the expression of many genes involved in MS, such as tumor necrosis factor‐α and nitric oxide synthase, among others, leading to mitochondrial dysfunction and energy deficits that result in mitochondrial and cellular calcium overload. Loss of mitochondrial membrane potential can increase the release of cytochrome c, one pathway that leads to neuronal apoptosis. Clinical studies suggest that omega‐3 long‐chain polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti‐inflammatory, antioxidant, and neuroprotective effects in MS and animal models of MS. Here, we review the relationship of oxidative stress, the glutathione redox system, the ATPase system, and membrane fluidity with the development of MS. In addition, we describe the main findings of a clinical trial conducted with relapsing‐remitting MS patients who received a diet supplemented with 4 g/day of fish oil or olive oil. The effects of PUFAs supplementation on the parameters indicated above are analyzed in this work

    Active commuting to and from university, obesity and metabolic syndrome among Colombian university students

    Get PDF
    Background: There is limited evidence concerning how active commuting (AC) is associated with health benefits in young. The aim of the study was to analyze the relationship between AC to and from campus (walking) and obesity and metabolic syndrome (MetS) in a sample of Colombian university students. Methods: A total of 784 university students (78.6% women, mean age = 20.1 ± 2.6 years old) participated in the study. The exposure variable was categorized into AC (active walker to campus) and non-AC (non/infrequent active walker to campus: car, motorcycle, or bus) to and from the university on a typical day. MetS was defined in accordance with the updated harmonized criteria of the International Diabetes Federation criteria. Results: The overall prevalence of MetS was 8.7%, and it was higher in non-AC than AC to campus. The percentage of AC was 65.3%. The commuting distances in this AC from/to university were 83.1%, 13.4% and 3.5% for < 2 km, 2- 5 km and > 5 km, respectively. Multiple logistic regressions for predicting unhealthy profile showed that male walking commuters had a lower probability of having obesity [OR = 0.45 (CI 95% 0.25–0.93)], high blood pressure [OR = 0.26 (CI 95% 0.13–0.55)] and low HDL cholesterol [OR = 0.29 (CI 95% 0.14–0.59)] than did passive commuters. Conclusions: Our results suggest that in young adulthood, a key life-stage for the development of obesity and MetS, AC could be associated with and increasing of daily physical activity levels, thereby promoting better cardiometabolic health.This study was part of the project entitled “Body Adiposity Index and Biomarkers of Endothelial and Cardiovascular Health in Adults”, which was funded by Centre for Studies on Measurement of Physical Activity, School of Medicine and Health Sciences, Universidad del Rosario (Code N° FIUR DNBG001) and Universidad de BoyacĂĄ (Code N° RECT 60)
    • 

    corecore