3 research outputs found

    Thermally isolated Luttinger liquids with noisy Hamiltonians

    Full text link
    We study the dynamics of a quantum-coherent thermally isolated Luttinger liquid with noisy Luttinger parameter. To characterize the fluctuations of the absorbed energy in generic noise-driven systems, we first identify two types of energy moments, which can help tease apart the effects of classical (sample-to-sample) and quantum sources of fluctuations. One type of moment captures the total fluctuations due to both sources, while the other one captures the effect of the classical source only. We then demonstrate that in the Luttinger liquid case, the two types of moments agree in the thermodynamic limit, indicating that the classical source dominates. In contrast to equilibrium thermodynamics, in this driven system the relative fluctuations of energy do not decay with the system size. Additionally, we study the deviations of equal-time correlation functions from their ground-state value, and find a simple scaling behavior.Comment: 11 pages, 2 figure

    Dressed, noise- or disorder- resilient optical lattices

    Full text link
    External noise is inherent in any quantum system, and can have especially strong effects for systems exhibiting sensitive many-body phenomena. We show how a dressed lattice scheme can provide control over certain types of noise for atomic quantum gases in the lowest band of an optical lattice, removing the effects of lattice amplitude noise to first order for particular choices of the dressing field parameters. We investigate the non-equilibrium many-body dynamics for bosons and fermions induced by noise away from this parameter regime, and also show how the same technique can be used to reduce spatial disorder in projected lattice potentials.Comment: 4+ Pages, 4 Figure

    Heating dynamics of bosonic atoms in a noisy optical lattice

    No full text
    We analyze the heating of interacting bosonic atoms in an optical lattice due to intensity fluctuations of the lasers forming the lattice. We focus in particular on fluctuations at low frequencies below the band-gap frequency, such that the dynamics is restricted to the lowest band. We derive stochastic equations of motion, and analyze the effects on different many-body states, characterizing heating processes in both strongly and weakly interacting regimes. In the limit where the noise spectrum is flat at low frequencies, we can derive an effective master equation describing the dynamics. We compute heating rates and changes to characteristic correlation functions both in the perturbation theory limit and using a full time-dependent calculation of the stochastic many-body dynamics in one dimension based on time-dependent density-matrix-renormalization-group methods
    corecore