47 research outputs found

    Antibiotic Prescribing Patterns in Ghana, Uganda, Zambia and Tanzania Hospitals: Results from the Global Point Prevalence Survey (G-PPS) on Antimicrobial Use and Stewardship Interventions Implemented

    Get PDF
    Antimicrobial resistance (AMR) remains an important global public health issue with antimicrobial misuse and overuse being one of the main drivers. The Global Point Prevalence Survey (G-PPS) of Antimicrobial Consumption and Resistance assesses the prevalence and the quality of antimicrobial prescriptions across hospitals globally. G-PPS was carried out at 17 hospitals across Ghana, Uganda, Zambia and Tanzania. The overall prevalence of antimicrobial use was 50% (30–57%), with most antibiotics prescribed belonging to the WHO ‘Access’ and ‘Watch’ categories. No ‘Reserve’ category of antibiotics was prescribed across the study sites while antimicrobials belonging to the ‘Not Recommended’ group were prescribed infrequently. Antimicrobials were most often prescribed for prophylaxis for obstetric or gynaecological surgery, making up between 12 and 18% of total prescriptions across all countries. The most prescribed therapeutic subgroup of antimicrobials was ‘Antibacterials for systemic use’. As a result of the programme, PPS data are now readily available for the first time in the hospitals, strengthening the global commitment to improved antimicrobial surveillance. Antimicrobial stewardship interventions developed included the formation of AMS committees, the provision of training and the preparation of new AMS guidelines. Other common interventions included the presentation of findings to clinicians for increased awareness, and the promotion of a multi-disciplinary approach to successful AMS programmes. Repeat PPS would be necessary to continually monitor the impact of interventions implemented. Broader participation is also encouraged to strengthen the evidence base

    Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism

    Get PDF
    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond

    Inibition of soluble guanylate cyclase by ODQ

    Full text link
    The heme in soluble guanylate cyclases (sGC) as isolated is ferrous, high-spin, and 5-coordinate. [1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (ODQ) has been used extensively as a specific inhibitor for sGC and as a diagnostic tool for identifying a role for sGC in signal transduction events. Addition of ODQ to ferrous sGC lends to a Soret shift from 431 to 392 nm and a decrease in nitric oxide (NO)stimulated sGC activity. This Soret shift is consistent with oxidation of the ferrous heme to ferric heme, The results reported here further define the molecular mechanism of inhibition of sGC by ODQ. addition of ODQ to the isolated sGC heme domain [beta 1(1-385)] gave the same spectral changes as when sGC was treated with ODQ. EPR and resonance Raman spectroscopy was used to show that the heme in ODQ-treated beta 1(1-385) is indeed ferric. Inhibition of the NO-stimulated sGC activity by ODQ is due to oxidation of the sGC heme and not to perturbation of the catalytic site, since the ODQ-treated sGC has the same basal activity as untreated sGC (68 +/- 12 nmol min(-1) mg(-1)). In addition, ODQ-oxidized sGC can be re-reduced by dithionite, and this re-reduced sGC has identical NO-stimulated activity as the original ferrous sGC. Oxidation of the sGC heme by ODQ is fast with a second-order rate constant of 8.5 x 10(3) M-1 s(-1). ODQ can also oxidize hemoglobin, indicating that the reaction is not specific for the heme in sGC versus that in other hemoproteins

    Revisiting the kinetics of nitric oxide (NO) binding to soluble guanylate cyclase: The simple NO-binding model is incorrect

    Full text link
    Soluble guanylate cyclase (sGC) is a ferrous iron hemoprotein receptor for nitric oxide (NO). NO binding to the heme activates the enzyme 300-fold. sGC as isolated is five-coordinate, ferrous with histidine as the axial ligand. The NO-activated enzyme is a five-coordinate nitrosyl complex where the axial histidine bond is broken. Past studies using rapid-reaction kinetics demonstrated that both the formation of a six-coordinate intermediate and the conversion of the intermediate to the activated five-coordinate nitrosyl complex depended on the concentration of NO. A model invoking a second NO molecule as a catalyst for the conversion of the six-coordinate intermediate to the five-coordinate sGC–NO complex was proposed to explain the observed kinetic data. A recent study [Bellamy, T. C., Wood, J. & Garthwaite, J. (2002) Proc. Natl. Acad. Sci. USA 99, 507–510] concluded that a simple two-step binding model explains the results. Here we show through further analysis and simulations of previous data that the simple two-step binding model cannot be used to describe our results. Instead we show that a slightly more complex two-step binding model, where NO is used as a ligand in the first step and a catalyst in the second step, can describe our results quite satisfactorily. These new simulations combined with the previous activation data lead to the conclusion that the intermediate six-coordinate sGC–NO complex has substantial activity. The model derived from our simulations also can account for the slow deactivation of sGC that has been observed in vitro

    N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-d-aspartate receptor activity

    Full text link
    The molecular and neuronal substrates conferring on clozapine its unique and superior efficacy in the treatment of schizophrenia remain elusive. The interaction of clozapine with many G protein-coupled receptors is well documented but less is known about its biologically active metabolite, N-desmethylclozapine. Recent clinical and preclinical evidences of the antipsychotic activity of the muscarinic agonist xanomeline prompted us to investigate the effects of N-desmethylclozapine on cloned human M1-M5 muscarinic receptors. N-desmethylclozapine preferentially bound to M1 muscarinic receptors with an IC(50) of 55 nM and was a more potent partial agonist (EC(50), 115 nM and 50% of acetylcholine response) at this receptor than clozapine. Furthermore, pharmacological and site-directed mutagenesis studies suggested that N-desmethylclozapine preferentially activated M1 receptors by interacting with a site that does not fully overlap with the acetylcholine orthosteric site. As hypofunction of N-methyl-d-aspartate (NMDA) receptor-driven neuronal ensembles has been implicated in psychotic disorders, the neuronal activity of N-desmethylclozapine was electrophysiologically investigated in hippocampal rat brain slices. N-desmethylclozapine was shown to dose-dependently potentiate NMDA receptor currents in CA1 pyramidal cells by 53% at 100 nM, an effect largely mediated by activation of muscarinic receptors. Altogether, our observations provide direct evidence that the brain penetrant metabolite N-desmethylclozapine is a potent, allosteric agonist at human M1 receptors and is able to potentiate hippocampal NMDA receptor currents through M1 receptor activation. These observations raise the possibility that N-desmethylclozapine contributes to clozapine's clinical activity in schizophrenics through modulation of both muscarinic and glutamatergic neurotransmission

    mraY

    Full text link
    corecore