153 research outputs found
Z-prime Gauge Bosons at the Tevatron
We study the discovery potential of the Tevatron for a Z-prime gauge boson.
We introduce a parametrization of the Z-prime signal which provides a
convenient bridge between collider searches and specific Z-prime models. The
cross section for p pbar -> Z-prime X -> l^+ l^- X depends primarily on the
Z-prime mass and the Z-prime decay branching fraction into leptons times the
average square coupling to up and down quarks. If the quark and lepton masses
are generated as in the standard model, then the Z-prime bosons accessible at
the Tevatron must couple to fermions proportionally to a linear combination of
baryon and lepton numbers in order to avoid the limits on Z--Z-prime mixing.
More generally, we present several families of U(1) extensions of the standard
model that include as special cases many of the Z-prime models discussed in the
literature. Typically, the CDF and D0 experiments are expected to probe
Z-prime-fermion couplings down to 0.1 for Z-prime masses in the 500--800 GeV
range, which in various models would substantially improve the limits set by
the LEP experiments.Comment: 34 pages, 13 figure
An NLO calculation of the electroproduction of large-E_\bot hadrons
We present a Next-to-Leading Order calculation of the cross section for the
leptoproduction of large- hadrons and we compare our predictions with
H1 data on the forward production of . We find large higher order
corrections and an important sensitivity to the renormalization and
factorization scales. These large corrections are shown to arise in part from
BFKL-like diagrams at the lowest order.Comment: 24 pages, plain LaTeX2e, 10 figure
NLO Calculation of Prompt Photon Production in DIS at HERA
We present a NLO calculation of prompt photon production in DIS. The
calculation involves direct, fragmentation and resolved contributions. It is
performed in the virtual-photon proton center-of-mass system. A comparison of
the theoretical results with HERA data is carried out
Jet-jet and hadron-jet correlations in hadro- and electro-production
We discuss, in the framework of perturbative QCD at next to leading order,
two related observables which are usually considered to provide tests of the
BFKL dynamics : jet-jet correlations at Tevatron energies and forward
particle-jet correlations at HERA. In the first case we study the rapidity gap
dependence of the azimuthal correlations and find slightly too strong
correlations at large gap. In the second case we discuss the cross section as
well as the azimuthal correlations over a rapidity gap range of 5 units. We
find that the requirement of a forward particle imposes strong kinematical
constraints which distort the distributions, notably at small rapidity gaps. We
also show that the decorrelation is stronger in electroproduction than in
hadron-hadron collisions. Unfortunately no data are yet available for
comparison.Comment: LaTeX, 19 pages, 7 figures (9 figure files
Antenna subtraction with massive fermions at NNLO: Double real initial-final configurations
We derive the integrated forms of specific initial-final tree-level
four-parton antenna functions involving a massless initial-state parton and a
massive final-state fermion as hard radiators. These antennae are needed in the
subtraction terms required to evaluate the double real corrections to
hadronic production at the NNLO level stemming from the partonic
processes and .Comment: 24 pages, 1 figure, 1 Mathematica file attache
The fully differential hadronic production of a Higgs boson via bottom quark fusion at NNLO
The fully differential computation of the hadronic production cross section
of a Higgs boson via bottom quarks is presented at NNLO in QCD. Several
differential distributions with their corresponding scale uncertainties are
presented for the 8 TeV LHC. This is the first application of the method of
non-linear mappings for NNLO differential calculations at hadron colliders.Comment: 27 pages, 13 figures, 1 lego plo
Potassium phosphite increases tolerance to UV-B in potato
The use of biocompatible chemical compounds that enhance plant disease resistance through Induced Resistance (IR) is an innovative strategy to improve the yield and quality of crops. Phosphites (Phi), inorganic salts of phosphorous acid, are environment friendly, and have been described to induce disease control. Phi, similar to other plant inductors, are thought to be effective against different types of biotic and abiotic stress, and it is assumed that the underlying signaling pathways probably overlap and interact. The signaling pathways triggered by UV-B radiation, for instance, are known to crosstalk with other signaling routes that respond that biotic stress. In the present work, the effect of potassium phosphite (KPhi) pre-treatment on UV-B stress tolerance was evaluated in potato leaves. Plants were treated with KPhi and, after 3 days, exposed to 2 h/day of UV-B (1.5 Watt m(-2)) for 0, 3 and 6 days. KPhi pre-treatment had a beneficial effect on two photosynthetic parameters, specifically chlorophyll content and expression of the psbA gene. Oxidative stress caused by UV-B was also prevented by KPhi. A decrease in the accumulation of hydrogen peroxide (H2O2) in leaves and an increase in guaiacol peroxidase (POD) and superoxide dismutase (SOD) activities were also observed. In addition, the expression levels of a gene involved in flavonoid synthesis increased in UV-B-stressed plants only when pre-treated with KPhi. Finally, accumulation of glucanases and chitinases was induced by UV-B stress and markedly potentiated by KPhi pre-treatment. Altogether, this is the first report that shows a contribution of KPhi in UV-B stress tolerance in potato plants
Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level
SAMURAI is a tool for the automated numerical evaluation of one-loop
corrections to any scattering amplitudes within the dimensional-regularization
scheme. It is based on the decomposition of the integrand according to the
OPP-approach, extended to accommodate an implementation of the generalized
d-dimensional unitarity-cuts technique, and uses a polynomial interpolation
exploiting the Discrete Fourier Transform. SAMURAI can process integrands
written either as numerator of Feynman diagrams or as product of tree-level
amplitudes. We discuss some applications, among which the 6- and 8-photon
scattering in QED, and the 6-quark scattering in QCD. SAMURAI has been
implemented as a Fortran90 library, publicly available, and it could be a
useful module for the systematic evaluation of the virtual corrections oriented
towards automating next-to-leading order calculations relevant for the LHC
phenomenology.Comment: 35 pages, 7 figure
One particle and Drell-Yan pair associated production
We briefly discuss the collinear factorization formula for the associated
production of one particle and a Drell-Yan pair in hadronic collisions. We
outline possible applications of the results to three different research areas.Comment: Presented at the workshop "30 years of strong interactions", Spa,
Belgium, 6-8 April 201
Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient
Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites
- …