1,919 research outputs found
Topologically non-trivial quantum layers
Given a complete non-compact surface embedded in R^3, we consider the
Dirichlet Laplacian in a layer of constant width about the surface. Using an
intrinsic approach to the layer geometry, we generalise the spectral results of
an original paper by Duclos et al. to the situation when the surface does not
possess poles. This enables us to consider topologically more complicated
layers and state new spectral results. In particular, we are interested in
layers built over surfaces with handles or several cylindrically symmetric
ends. We also discuss more general regions obtained by compact deformations of
certain layers.Comment: 15 pages, 6 figure
The dynamics of 1D Bloch electrons in constant electric fields
We study the dynamics of a 1D Bloch electron subjected to a constant electric
field. The periodic potential is supposed to be less singular than the -like potential (Dirac comb). We give a rigorous proof of Ao's result
\cite{Ao} that for a large class of initial conditions (high momentum regime)
there is no localization in momentum space. The proof is based on the
mathematical substantiation of the two simplifying assumptions made in physical
literature: the transitions between far away bands can be neglected and the
transitions at the quasi-crossing can be described by Landau-Zener like
formulae. Using the connection between the above model and the driven quantum
ring (DQR) shown by Avron and Nemirovski \cite{AvN}, our results imply the
increase of energy for weakly singular such DQR and appropiate initial
conditions.Comment: 51 pages, 1 figur
Weakly regular Floquet Hamiltonians with pure point spectrum
We study the Floquet Hamiltonian: -i omega d/dt + H + V(t) as depending on
the parameter omega. We assume that the spectrum of H is discrete, {h_m (m =
1..infinity)}, with h_m of multiplicity M_m. and that V is an Hermitian
operator, 2pi-periodic in t. Let J > 0 and set Omega_0 = [8J/9,9J/8]. Suppose
that for some sigma > 0: sum_{m,n such that h_m > h_n} mu_{mn}(h_m -
h_n)^(-sigma) < infinity where mu_{mn} = sqrt(min{M_m,M_n)) M_m M_n. We show
that in that case there exist a suitable norm to measure the regularity of V,
denoted epsilon, and positive constants, epsilon_* & delta_*, such that: if
epsilon
|Omega_0| - delta_* epsilon and the Floquet Hamiltonian has a pure point
spectrum for all omega in Omega_infinity.Comment: 35 pages, Latex with AmsAr
Bound states and scattering in quantum waveguides coupled laterally through a boundary window
We consider a pair of parallel straight quantum waveguides coupled laterally
through a window of a width in the common boundary. We show that such
a system has at least one bound state for any . We find the
corresponding eigenvalues and eigenfunctions numerically using the
mode--matching method, and discuss their behavior in several situations. We
also discuss the scattering problem in this setup, in particular, the turbulent
behavior of the probability flow associated with resonances. The level and
phase--shift spacing statistics shows that in distinction to closed
pseudo--integrable billiards, the present system is essentially non--chaotic.
Finally, we illustrate time evolution of wave packets in the present model.Comment: LaTeX text file with 12 ps figure
Limiting absorption principle and perfectly matched layer method for Dirichlet Laplacians in quasi-cylindrical domains
We establish a limiting absorption principle for Dirichlet Laplacians in
quasi-cylindrical domains. Outside a bounded set these domains can be
transformed onto a semi-cylinder by suitable diffeomorphisms. Dirichlet
Laplacians model quantum or acoustically-soft waveguides associated with
quasi-cylindrical domains. We construct a uniquely solvable problem with
perfectly matched layers of finite length. We prove that solutions of the
latter problem approximate outgoing or incoming solutions with an error that
exponentially tends to zero as the length of layers tends to infinity. Outgoing
and incoming solutions are characterized by means of the limiting absorption
principle.Comment: to appear in SIAM Journal on Mathematical Analysi
- …
