113 research outputs found
Considering mesohabitat scale in ecological impact assessment of sediment flushing
Benthic macroinvertebrates respond to several factors characterizing the physical habitats, as water depth, current and streambed substrate. Thus, anthropogenic disturbances altering these factors may have different effects on benthos, also depending on mesohabitats. These disturbances include sediment flushing operations, commonly carried out to recover reservoir capacity, and investigating their effects at mesohabitat scale could be relevant for an adequate ecological impact assessment of these operations. Here, we compared benthic macroinvertebrate communities sampled before and after a controlled sediment flushing operation in three different mesohabitats (a pool, a riffle and a step-pool) of an Alpine stream. Contrary from expectations, the composition of macroinvertebrate assemblages was not significantly different among mesohabitats. Moreover, the impact of sediment flushing was more significant in terms of density rather than in richness. Two stressor-specific indices were tested, but only one (the Siltation Index for LoTic EcoSystems - SILTES) clearly detected the impact of sediment flushing on the macroinvertebrate community structure. Finally, some differences in the temporal trajectories and recovery times to pre-flushing conditions were observed among mesohabitats, both if the three mesohabitats were considered separately and if all their possible combinations were accounted for. Particularly, riffle was the most sensitive mesohabitat, not fully recovering one year after the sediment disturbance
Finite-momentum condensate of magnetic excitons in a bilayer quantum Hall system
We study the bilayer quantum Hall system at total filling factor \nu_T = 1
within a bosonization formalism which allows us to approximately treat the
magnetic exciton as a boson. We show that in the region where the distance
between the two layers is comparable to the magnetic length, the ground state
of the system can be seen as a finite-momentum condensate of magnetic excitons
provided that the excitation spectrum is gapped. We analyze the stability of
such a phase within the Bogoliubov approximation firstly assuming that only one
momentum Q0 is macroscopically occupied and later we consider the same
situation for two modes \pm Q0. We find strong evidences that a first-order
quantum phase transition at small interlayer separation takes place from a
zero-momentum condensate phase, which corresponds to Halperin 111 state, to a
finite-momentum condensate of magnetic excitons.Comment: 18 pages, 11 figures, final versio
NMR linewidth and Skyrmion localization in quantum Hall ferromagnets
The non-monotonic behavior of the NMR signal linewidth in the 2D quantum Hall
system is explained in terms of the interplay between skyrmions localization,
due to the influence of disorder, and the non-trivial temperature dependent
skyrmion dynamics.Comment: 5 pages, 2 figure
Fly fishing no-kill zones: a possible way to conjugate conservation issues, sustainable sport enhancement and local development in Alpine areas?
The promotion of sustainable tourism and outdoor sports can represent an important way to couple environmental conservation strategies and economic enhancement in marginal and Alpine areas. In this context catch and release fly fishing zones can represent an interesting tool, although no data is available on the effectiveness of these practices on Alpine salmonid population dynamics. Salmonids are the main group of fish in alpine rivers and they are the only actively targeted by anglers. Aim of this work is filling this gap, with a pilot study on two no-kill zones (Po and Pellice rivers, NW Italy). We conducted a temporal and spatial comparison between free-fishing and catch and release management river sections, with a detailed analysis on the Po River site. Our results support the hypothesis that catch and release management allows a numerical increase in wild trout populations. In particular, we detected a massive and rapid increase in younger individuals, possibly linked to a stop on the removal of large-sized reproducers. Protecting trout by the implementation of this practice can at the same time allow the increase of sustainable economic development and sport in marginal areas
Beta-diversity and stressor specific index reveal patterns of macroinvertebrate community response to sediment flushing
Anthropogenic increase of fine sediment loading is one of the main pressures for rivers worldwide. Particularly, Alpine streams are increasingly facing this issue due to sediment flushing operations from hydropower reservoirs, aimed at recovering storage for preserving electricity generation. Although Controlled Sediment Flushing Operations (CSFOs) are becoming increasingly frequent, ecological indicators to adequately assess and monitor their impact on the stream ecosystem have been poorly developed. In this work, we aimed to perform a screening of currently available biomonitoring tools to evaluate the CSFO effects on the riverine biota and adequately assess its recovery, starting from the recognition of the main ecological mechanisms triggered by the mentioned activities on benthic macroinvertebrate communities. We used two independent datasets concerning two reservoirs in the central Italian Alps to investigate the temporal effects of CSFOs repeated for four consecutive years (case-study I), and the impact of a single CSFO at a seasonal scale through a before/after-control/impact approach (case-study II). Initially, we quantified the CSFO impact on the richness and beta-diversity of macroinvertebrate communities by combining multivariate and univariate statistical techniques. Then, we compared the performance of the Siltation Index for LoTic EcoSystems (SILTES), recently developed for detecting siltation impact in Alpine streams, with that of the generic index currently adopted to assess the ecological status (sensu Water Framework Directive) of the Italian rivers, and of another sediment-specific index, but developed for a different bio-geographical area. The analysis of the two case-studies demonstrated that the nestedness (i.e. taxa loss) is the primary source of biological impairment caused by CSFOs. Moreover, we found that SILTES was more effective than the other indices because of its strong correlation with the nestedness, and since it properly discriminated impaired and pristine conditions, at both multi-annual and seasonal scale. In the first case-study, a threshold in the temporal trend of this index was detected, indicating a recovery within three months. In the second one, SILTES showed a recovery to pre-event seasonal values after nine months from the CSFO, due to larger and more persistent sediment deposition. This study demonstrates that SILTES could be adopted as a benchmark to improve the management of CSFOs from an ecological viewpoint. Our findings can be extended to the management of other sediment-related activities affecting mountainous streams worldwide, and, more generally, the adopted approach can be replicated for developing new ecological tools to manage other disturbances to river environments
Functional feeding groups of aquatic insects influence trace element accumulation: Findings for filterers, scrapers and predators from the po basin
For this study, we measured the concentrations of 23 trace elements (Al, As, Ba, Bi, Cd, Cr, Co, Cu, Fe, Ga, Hg, In, Li, Mn, Mo, Ni, Pb, Se, Sr, Ti, Tl, V, and Zn) in the whole bodies of three functional feeding groups (FFG) (filterers—Hydropsychidae, scrapers—Heptageniidae, and predators—Odonata) of aquatic insects collected from two sites in the Po basin (Po Settimo and Malone Front, Northwest Italy) to determine: (a) how FFG influence trace element accumulations, (b) if scrapers accumulate higher elements compared to the other FFG, since they graze on periphyton, which represents one of the major sinks of metals, and (c) the potential use of macroinvertebrates to assess the bioavailability of trace elements in freshwater. The hierarchical clustering analysis generated three main groups based on trace element concentrations: the most abundant elements were Fe and Al, followed by Sr, In, Zn, V, Mo, and Cu. Tl was below the limit of detection (LOD) in all FFG. Ga was detected only in scrapers from both sites and Hg only in predators from Po Settimo. The principal component analysis showed that concentrations of Al, As, Bi, Cd, Co, Cr, Ga, Fe, In, Mn, Pb, Ni, and Sr were highest in scrapers, suggesting that trace elements accumulate from the ingestion of epilithic periphyton (biofilm). Odonata (predators) accumulate certain elements (Ba, Hg, Li, Se, V, Ti, and Zn) in higher concentrations by food ingestion composed of different aquatic organisms. Differently, Cu and Mo concentrations were the highest in filterers due to their bioavailability in the water column. Non-metric multidimensional scaling clearly differentiated the FFG based on their ability to accumulate trace elements. The findings from this study represent an important step toward the definition of an innovative approach based on trace element accumulation by macroinvertebrates
Spin-excitations of the quantum Hall ferromagnet of composite fermions
The spin-excitations of a fractional quantum Hall system are evaluated within
a bosonization approach. In a first step, we generalize Murthy and Shankar's
Hamiltonian theory of the fractional quantum Hall effect to the case of
composite fermions with an extra discrete degree of freedom. Here, we mainly
investigate the spin degrees of freedom, but the proposed formalism may be
useful also in the study of bilayer quantum-Hall systems, where the layer index
may formally be treated as an isospin. In a second step, we apply a
bosonization scheme, recently developed for the study of the two-dimensional
electron gas, to the interacting composite-fermion Hamiltonian. The dispersion
of the bosons, which represent quasiparticle-quasihole excitations, is
analytically evaluated for fractional quantum Hall systems at \nu = 1/3 and \nu
= 1/5. The finite width of the two-dimensional electron gas is also taken into
account explicitly. In addition, we consider the interacting bosonic model and
calculate the lowest-energy state for two bosons. Besides a continuum
describing scattering states, we find a bound-state of two bosons. This state
is interpreted as a pair excitation, which consists of a skyrmion of composite
fermions and an antiskyrmion of composite fermions. The dispersion relation of
the two-boson state is evaluated for \nu = 1/3 and \nu = 1/5. Finally, we show
that our theory provides the microscopic basis for a phenomenological
non-linear sigma-model for studying the skyrmion of composite fermions.Comment: Revised version, 14 pages, 4 figures, accepted to Phys. Rev.
Interaction and dynamical binding of spin waves or excitons in quantum Hall systems
Interaction between spin waves (or excitons) moving in the lowest Landau
level is studied using numerical diagonalization. Becuse of complicated
statistics obeyed by these composite particles, their effective interaction is
completely different from the dipole-dipole interaction predicted in the model
of independent (bosonic) waves. In particular, spin waves moving in the same
direction attract one another which leads to their dynamical binding. The
interaction pseudopotentials V_[up,up](k) and V_[up,down](k) for two spin waves
with equal wavevectors k and moving in the same or opposite directions have
been calculated and shown to obey power laws V(k) ~ k^alpha at small k. A high
value of alpha_[up,up]~4 explains the occurrence of linear bands in the spin
excitation spectra of quantum Hall droplets.Comment: 6 pages, 4 figures, submitted to PR
- …