96 research outputs found
The Madison plasma dynamo experiment: a facility for studying laboratory plasma astrophysics
The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic
plasma research device designed to investigate flow driven magnetohydrodynamic
(MHD) instabilities and other high- phenomena with astrophysically
relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of
alternately oriented 4000 G samarium cobalt magnets which create an
axisymmetric multicusp that contains 14 m of nearly magnetic field
free plasma that is well confined and highly ionized . At present, 8
lanthanum hexaboride (LaB) cathodes and 10 molybdenum anodes are inserted
into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a
low pressure Ar or He fill gas and heating it. Up to 100 kW of electron
cyclotron heating (ECH) power is planned for additional electron heating. The
LaB cathodes are positioned in the magnetized edge to drive toroidal
rotation through torques that propagate into the
unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic
Reynolds number , and an adjustable fluid Reynolds number , in the regime where the kinetic energy of the flow exceeds the magnetic
energy (vv). Initial results from MPDX are presented
along with a 0-dimensional power and particle balance model to predict the
viscosity and resistivity to achieve dynamo action.Comment: 14 pages, 13 figure
Non-Lorentzian single-molecule line shape: Pseudolocal phonons and coherence transfer
The excitation line shape of a single terrylene molecule in a naphthalene crystal has been investigated. In addition to the conventional Lorentzian, it consists of a dispersive component in the core region and a sideband. This is due to a pseudolocal phonon caused by the substitution of a host molecule with the chromophore. When the pseudolocal phonon is excited, the resonance frequency of the chromophore slightly changes, resulting in the appearance of a second, quasiresonant transition. Coherence transfer between these two optical transitions causes the deviation from the purely Lorentzian line shape
Maternal COVID-19 causing intrauterine foetal demise with microthrombotic placental insufficiency: a case report
BACKGROUND: Pregnant women have an increased risk of getting infected with SARS-CoV-2 and are more prone to severe illness. Data on foetal demise in affected pregnancies and its underlying aetiology is scarce and pathomechanisms remain largely unclear. CASE: Herein we present the case of a pregnant woman with COVID-19 and intrauterine foetal demise. She had no previous obstetric or gynaecological history, and presented with mild symptoms at 34 + 3 weeks and no signs of foetal distress. At 35 + 6 weeks intrauterine foetal death was diagnosed. In the placental histopathology evaluation, we found inter- and perivillous fibrin depositions including viral particles in areas of degraded placental anatomy without presence of viral entry receptors and SARS-CoV-2 infection of the placenta. CONCLUSION: This case demonstrates that maternal SARS-CoV-2 infection in the third trimester may lead to an unfavourable outcome for the foetus due to placental fibrin deposition in maternal COVID-19 disease possibly via a thrombogenic microenvironment, even when the foetus itself is not infected
Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells
<p>Abstract</p> <p>Background</p> <p>Ginger (<it>Zingiber officinale </it>Rosc) is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells <it>in vitro</it>.</p> <p>Methods</p> <p>The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger.</p> <p>Results</p> <p>Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that <it>in vitro</it>, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8.</p> <p>Conclusion</p> <p>Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer.</p
Recommended from our members
Senescent Syncytiotrophoblast Secretion During Early Onset Preeclampsia.
BACKGROUND: Preeclampsia is a severe hypertensive disorder in pregnancy that causes preterm delivery, maternal and fetal morbidity, mortality, and life-long sequelae. Understanding the pathogenesis of preeclampsia is a critical first step toward protecting mother and child from this syndrome and increased risk of cardiovascular disease later in life. However, effective early predictive tests and therapies for preeclampsia are scarce. METHODS: To identify novel markers and signaling pathways for early onset preeclampsia, we profiled human maternal-fetal interface units (fetal villi and maternal decidua) from early onset preeclampsia and healthy controls using single-nucleus RNA sequencing combined with spatial transcriptomics. The placental syncytiotrophoblast is in direct contact with maternal blood and forms the barrier between fetal and maternal circulation. RESULTS: We identified different transcriptomic states of the endocrine syncytiotrophoblast nuclei with patterns of dysregulation associated with a senescence-associated secretory phenotype and a spatial dysregulation of senescence in the placental trophoblast layer. Elevated senescence markers were validated in placental tissues of clinical multicenter cohorts. Importantly, several secreted senescence-associated secretory phenotype factors were elevated in maternal blood already in the first trimester. We verified the secreted senescence markers, PAI-1 (plasminogen activator inhibitor 1) and activin A, as identified in our single-nucleus RNA sequencing model as predictive markers before clinical preeclampsia diagnosis. CONCLUSIONS: This indicates that increased syncytiotrophoblast senescence appears weeks before clinical manifestation of early onset preeclampsia, suggesting that the dysregulated preeclamptic placenta starts with higher cell maturation resulting in premature and increased senescence-associated secretory phenotype release. These senescence-associated secretory phenotype markers may serve as an additional early diagnostic tool for this syndrome
Report to DOE on the evaluation of initial trapping studies
This report summarizes work up to Dec. 1, 1978 on the single mirror plug of Phaedrus. The design, construction and initial experiments proceeded without major problems. The results on RF trapping and heating steadily improved during the months of October and November with our best results being obtained during the last two weeks of November. These positive results are encouraging for RF heating in mirrors. The experiments to date have concentrated on heating stream gun plasmas. This plasma source has been well suited for our initial studies as it produces a hot, dense plasma over a long duration (approx. 1 msec). This has made diagnostics particularly straight forward. Because of the time scale we have carried out most of our work with the 200 kW source which is capable of running for long pulses (30 msec)
Whistler-mode electron cyclotron emission from the Phaedrus-B end cell
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
Whistler-mode electron cyclotron emission from the Phaedrus-B end cell
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
- …