153 research outputs found

    The electromagnetic vertex of neutrinos in an electron background and a magnetic field

    Full text link
    We study the electromagnetic vertex function of a neutrino that propagates in an electron background in the presence of a static magnetic field. The structure of the vertex function under the stated conditions is determined and it is written down in terms of a minimal and complete set of tensors. The one-loop expressions for all the form factors is given, up to terms that are linear in the magnetic field, and the approximate integral formulas that hold in the long wavelength limit are obtained. We discuss the physical interpretation of some of the form factors and their relation with the concept of the neutrino induced charge. The neutrino acquires a longitudinal and a transverse charge, due to the fact that the form factors depend on the transverse and longitudinal components of the photon momentum independently. We compute those form factors explicitly in various limiting cases and find that the longitudinal and transverse charge are the same for the case of a non-relativistic electron gas, but not otherwise.Comment: 18 pages. Revtex4, axodra

    Gravitational coupling of neutrinos in a medium

    Get PDF
    In a medium that contains electrons but not the other charged leptons, such as normal matter, the gravitational interactions of neutrinos are not the same for all the neutrino flavors. We calculate the leading order matter-induced corrections to the neutrino gravitational interactions in such a medium and consider some of their physical implications.Comment: 21 pages, Latex, uses axodraw.sty (typos corrected; two references added. To appear in Phys. Rev. D

    Nucleon contribution to the neutrino electromagnetic vertex in matter

    Full text link
    We calculate the nucleon contribution to the electromagnetic vertex of a neutrino in a background of particles, including the effect of the anomalous magnetic moment of the nucleons. Explicit formulas for the form factors are given in various physical limits of practical interest. Several applications of the results are mentioned, including the effect of an external magnetic field on the dispersion relation of a neutrino in matter.Comment: LaTeX, 18 pages; to appear in PR

    Electromagnetic properties of a neutrino stream

    Get PDF
    In a medium that contains a neutrino background in addition to the matter particles, the neutrinos contribute to the photon self-energy as a result of the effective electromagnetic vertex that they acquire in the presence of matter. We calculate the contribution to the photon self-energy in a dense plasma, due to the presence of a gas of charged particles, or neutrinos, that moves as a whole relative to the plasma. General formulas for the transverse and longitudinal components of the photon polarization tensor are obtained in terms of the momentum distribution functions of the particles in the medium, and explicit results are given for various limiting cases of practical interest. The formulas are used to study the electromagnetic properties of a plasma that contains a beam of neutrinos. The transverse and longitudinal photon dispersion relations are studied in some detail. Our results do not support the idea that neutrino streaming instabilities can develop in such a system. We also indicate how the phenomenon of optical activity of the neutrino gas is modified due to the velocity of the neutrino background relative to the plasma. The general approach and results can be adapted to similar problems involving relativistic plasmas and high-temperature gauge theories in other environments.Comment: Revtex, 19 pages and 3 included ps file

    Gauge Independence of Limiting Cases of One-Loop Electron Dispersion Relation in High-Temperature QED

    Get PDF
    Assuming high temperature and taking subleading temperature dependence into account, gauge dependence of one-loop electron dispersion relation is investigated in massless QED at zero chemical potential. The analysis is carried out using a general linear covariant gauge. The equation governing the gauge dependence of the dispersion relation is obtained and used to prove that the dispersion relation is gauge independent in the limiting case of momenta much larger than eTeT. It is also shown that the effective mass is not influenced by the leading temperature dependence of the gauge dependent part of the effective self-energy. As a result the effective mass, which is of order eTeT, does not receive a correction of order e2Te^2T from one loop, independent of the gauge parameter.Comment: Revised and enlarged version, 14 pages, Revte

    Axial vector current in an electromagnetic field and low-energy neutrino-photon interactions

    Full text link
    An expression for the axial vector current in a strong, slowly varying electromagnetic field is obtained. We apply this expression to the construction of the effective action for low-energy neutrino-photon interactions.Comment: 6 pages, references updated, final version to appear in Phys. Rev.

    Neutrino damping rate at finite temperature and density

    Get PDF
    A first principle derivation is given of the neutrino damping rate in real-time thermal field theory. Starting from the discontinuity of the neutrino self energy at the two loop level, the damping rate can be expressed as integrals over space phase of amplitudes squared, weighted with statistical factors that account for the possibility of particle absorption or emission from the medium. Specific results for a background composed of neutrinos, leptons, protons and neutrons are given. Additionally, for the real part of the dispersion relation we discuss the relation between the results obtained from the thermal field theory, and those obtained by the thermal average of the forward scattering amplitude.Comment: LaTex Document, 19 pages, 3 figure

    Radiative Neutrino Decay in Media

    Get PDF
    In this letter we introduce a new method to determine the radiative neutrino decay rate in the presence of a medium. Our approach is based on the generalisation of the optical theorem at finite temperature and density. Differently from previous works on this subject, our method allows to account for dispersive and dissipative electromagnetic properties of the medium. Some inconsistencies that are present in the literature are pointed-out and corrected here. We shortly discuss the relevance of our results for neutrino evolution in the early universe.Comment: 11 pages, 3 encapsulated figure

    Neutrino self-energy and dispersion in a medium with magnetic field

    Get PDF
    We calculate the one-loop thermal self-energy of a neutrino in a constant and homogeneous magnetic field to all orders in the magnetic field strength using Schwinger's proper time method. We obtain the dispersion relation under various conditions.Comment: 17 pp, RevTeX, one figur

    Neutrino magnetic moment in a magnetized plasma

    Full text link
    The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.Comment: 7 page, 1 figures, based on the talk presented by E.N.Narynskaya at the XVI International Seminar Quarks'2010, Kolomna, Moscow Region, June 6-12, 2010, to appear in the Proceeding
    • …
    corecore