10,314 research outputs found
Spectroscopic characterisation of CARMENES target candidates from FEROS, CAFE and HRS high-resolution spectra
CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with
Near-infrared and optical Echelle Spectrographs) started a new planet survey on
M-dwarfs in January this year. The new high-resolution spectrographs are
operating in the visible and near-infrared at Calar Alto Observatory. They will
perform high-accuracy radial-velocity measurements (goal 1 m s-1) of about 300
M-dwarfs with the aim to detect low-mass planets within habitable zones. We
characterised the candidate sample for CARMENES and provide fundamental
parameters for these stars in order to constrain planetary properties and
understand star-planet systems. Using state-of-the-art model atmospheres
(PHOENIX-ACES) and chi2-minimization with a downhill-simplex method we
determine effective temperature, surface gravity and metallicity [Fe/H] for
high-resolution spectra of around 480 stars of spectral types M0.0-6.5V taken
with FEROS, CAFE and HRS. We find good agreement between the models and our
observed high-resolution spectra. We show the performance of the algorithm, as
well as results, parameter and spectral type distributions for the CARMENES
candidate sample, which is used to define the CARMENES target sample. We also
present first preliminary results obtained from CARMENES spectra
The H.E.S.S. extragalactic sky
The H.E.S.S. Cherenkov telescope array, located on the southern hemisphere in
Namibia, studies very high energy (VHE; E>100 GeV) gamma-ray emission from
astrophysical objects. During its successful operations since 2002 more than 80
galactic and extra-galactic gamma-ray sources have been discovered. H.E.S.S.
devotes over 400 hours of observation time per year to the observation of
extra-galactic sources resulting in the discovery of several new sources,
mostly AGNs, and in exciting physics results e.g. the discovery of very rapid
variability during extreme flux outbursts of PKS 2155-304, stringent limits on
the density of the extragalactic background light (EBL) in the near-infrared
derived from the energy spectra of distant sources, or the discovery of
short-term variability in the VHE emission from the radio galaxy M 87. With the
recent launch of the Fermi satellite in 2008 new insights into the physics of
AGNs at GeV energies emerged, leading to the discovery of several new
extragalactic VHE sources. Multi-wavelength observations prove to be a powerful
tool to investigate the production mechanism for VHE emission in AGNs. Here,
new results from H.E.S.S. observations of extragalactic sources will be
presented and their implications for the physics of these sources will be
discussed.Comment: 8 pages, 6 figures, invited review talk, in the proceedings of the
"International Workshop on Beamed and Unbeamed Gamma-Rays from Galaxies"
11-15 April 2011, Lapland Hotel Olos, Muonio, Finland, Journal of Physics:
Conference Series Volume 355, 201
Chesapeake Bay Baseline Data Acquisition: Final Report
This report forms one of several appendices which are the body of
the Chesapeake Bay Baseline Data Acquisition Final Report. These
appendices are as follows:
Appendix I. A Chesapeake Bay Directory
Appendix II. Submerged Aquatic Vegetation
Appendix III. Toxics in the Chesapeake Bay
Appendix IV. Eutrophication
Appendix V. Shellfish Bed Closures
Appendix VI. Dredging and Spoil Disposal
Appendix VII. Modification of Fisheries
Appendix VIII. Hydrologic Modifications
Appendix IX. Wetlands Alteration
Appendix X. Effects of Boating and Shipping on Water Quality
Appendix XI. Shoreline Erosio
Prototype 9.7 m Schwarzschild-Couder telescope for the Cherenkov Telescope Array: status of the optical system
The Cherenkov Telescope Array (CTA) is an international project for a
next-generation ground-based gamma ray observatory, aiming to improve on the
sensitivity of current-generation experiments by an order of magnitude and
provide energy coverage from 30 GeV to more than 300 TeV. The 9.7m
Schwarzschild-Couder (SC) candidate medium-size telescope for CTA exploits a
novel aplanatic two-mirror optical design that provides a large field of view
of 8 degrees and substantially improves the off-axis performance giving better
angular resolution across all of the field of view with respect to
single-mirror telescopes. The realization of the SC optical design implies the
challenging production of large aspherical mirrors accompanied by a
submillimeter-precision custom alignment system. In this contribution we report
on the status of the implementation of the optical system on a prototype 9.7 m
SC telescope located at the Fred Lawrence Whipple Observatory in southern
Arizona.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC
2017), Busan, Korea. All CTA contributions at arXiv:1709.0348
Conservative and disruptive modes of adolescent change in human brain functional connectivity
Adolescent changes in human brain function are not entirely understood. Here, we used multiecho functional MRI (fMRI) to measure developmental change in functional connectivity (FC) of resting-state oscillations between pairs of 330 cortical regions and 16 subcortical regions in 298 healthy adolescents scanned 520 times. Participants were aged 14 to 26 y and were scanned on 1 to 3 occasions at least 6 mo apart. We found 2 distinct modes of age-related change in FC: âconservativeâ and âdisruptive.â Conservative development was characteristic of primary cortex, which was strongly connected at 14 y and became even more connected in the period from 14 to 26 y. Disruptive development was characteristic of association cortex and subcortical regions, where connectivity was remodeled: connections that were weak at 14 y became stronger during adolescence, and connections that were strong at 14 y became weaker. These modes of development were quantified using the maturational index (MI), estimated as Spearmanâs correlation between edgewise baseline FC (at 14 y, FC14) and adolescent change in FC (ÎFC14â26), at each region. Disruptive systems (with negative MI) were activated by social cognition and autobiographical memory tasks in prior fMRI data and significantly colocated with prior maps of aerobic glycolysis (AG), AG-related gene expression, postnatal cortical surface expansion, and adolescent shrinkage of cortical thickness. The presence of these 2 modes of development was robust to numerous sensitivity analyses. We conclude that human brain organization is disrupted during adolescence by remodeling of FC between association cortical and subcortical areas
Association of the CCR5 gene with juvenile idiopathic arthritis
The CC chemokine receptor 5 (CCR5) has been shown to be important in the recruitment of T-helper cells to the synovium, where they accumulate, drive the inflammatory process and the consequent synovitis and joint destruction. A 32 base-pair insertion/deletion variant (CCR5Î32) within the gene leads to a frame shift and a nonfunctional receptor. CCR5Î32 has been investigated for its association with juvenile idiopathic arthritis (JIA), with conflicting results. The aim of this study was to investigate whether CCR5Î32 is associated with JIA in an UK population. CCR5Î32 was genotyped in JIA cases (n=1054) and healthy controls (n=3129) and genotype and allele frequencies were compared. A meta-analysis of our study combined with previously published studies was performed. CCR5Î32 was significantly associated with protection from developing JIA, in this UK data set (P(trend)=0.006, odds ratio (OR) 0.79 95% confidence interval (95% CI): 0.66-0.94). The meta-analysis of all published case-control association studies confirmed the protective association with JIA (P=0.001 OR 0.82 95% CI: 0.73-0.93). CCR5Î32 is a functional variant determining the number of receptors on the surface of T cells, and it is hypothesized that the level of CCR5 expression could influence the migration of proinflammatory T cells into the synovium and thus susceptibility to JIA
UVMag: stellar formation, evolution, structure and environment with space UV and visible spectropolarimetry
Important insights into the formation, structure, evolution and environment
of all types of stars can be obtained through the measurement of their winds
and possible magnetospheres. However, this has hardly been done up to now
mainly because of the lack of UV instrumentation available for long periods of
time. To reach this aim, we have designed UVMag, an M-size space mission
equipped with a high-resolution spectropolarimeter working in the UV and
visible spectral range. The UV domain is crucial in stellar physics as it is
very rich in atomic and molecular lines and contains most of the flux of hot
stars. Moreover, covering the UV and visible spectral domains at the same time
will allow us to study the star and its environment simultaneously. Adding
polarimetric power to the spectrograph will multiply tenfold the capabilities
of extracting information on stellar magnetospheres, winds, disks, and magnetic
fields. Examples of science objectives that can be reached with UVMag are
presented for pre-main sequence, main sequence and evolved stars. They will
cast new light onto stellar physics by addressing many exciting and important
questions. UVMag is currently undergoing a Research and Technology study and
will be proposed at the forthcoming ESA call for M-size missions. This
spectropolarimeter could also be installed on a large UV and visible
observatory (e.g. NASA's LUVOIR project) within a suite of instruments.Comment: Accepted in ApSS's special volume on UV astronom
Dr. Yang Zhong: an explorer on the road forever
On the morning of September 25th 2017, grievous news spread from the remote Ordos region of Inner Mongolia to Fudan University campus in Shanghai. Professor Yang Zhong, a famous botanist and the Dean of Fudan Universityâs graduate school, passed away in a tragic car accident while on a business trip
DeepBrain: Functional Representation of Neural In-Situ Hybridization Images for Gene Ontology Classification Using Deep Convolutional Autoencoders
This paper presents a novel deep learning-based method for learning a
functional representation of mammalian neural images. The method uses a deep
convolutional denoising autoencoder (CDAE) for generating an invariant, compact
representation of in situ hybridization (ISH) images. While most existing
methods for bio-imaging analysis were not developed to handle images with
highly complex anatomical structures, the results presented in this paper show
that functional representation extracted by CDAE can help learn features of
functional gene ontology categories for their classification in a highly
accurate manner. Using this CDAE representation, our method outperforms the
previous state-of-the-art classification rate, by improving the average AUC
from 0.92 to 0.98, i.e., achieving 75% reduction in error. The method operates
on input images that were downsampled significantly with respect to the
original ones to make it computationally feasible
- âŠ