105 research outputs found

    Plasma metabolites, productive performance and rumen volatile fatty acid profiles of Northern Australian Bos indicus steers supplemented with Desmanthus and lucerne

    Get PDF
    The hypothesis tested was that tropical steers supplemented with the Desmanthus legume and lucerne, a widely characterized temperate legume of high nutritive value, would elicit similar responses in plasma metabolite profiles, productive performance, nitrogen retention, and volatile fatty acids (VFA). The tannin-binding compound, polyethylene glycol-4000 (PEG), was added to the diets (160 g/kg Desmanthus dry matter) with the objective of further exploring nitrogen (N) utilization in the animals supplemented with Desmanthus relative to lucerne. From February to June 2020, sixteen yearling Brangus steers (average liveweight of 232 ± 6 kg) were fed a background diet of Rhodes grass (Chloris gayana) hay for 28 days, before introducing three Desmanthus cultivars (Desmanthus virgatus cv. JCU2, D. bicornutus cv. JCU4, D. leptophyllus cv. JCU7) and lucerne (Medicago sativa) at 30% dry matter intake (DMI). Relative to the backgrounding period, all supplemented steers exhibited similar growth performance. Steers supplemented with Desmanthus recorded a lower DMI and animal growth performance, but higher fecal N concentration than animals supplemented with lucerne. Among the three Desmanthus cultivars, there were no significant differences in N concentrations, VFA, and plasma metabolite profiles. The addition of PEG induced higher rumen iso-acid concentrations and fecal N excretion. However, feeding Desmanthus spp. to tropical Bos indicus steers could be a valuable means of increasing N utilization, which is attributable to the presence of tannins, and, consequently, improve animal productive performance. Since supplementation with lucerne resulted in higher liveweight, daily liveweight gains, and overall animal performance than supplementing with Desmanthus, the tested hypothesis that both supplements will elicit similar animal performance does not hold and must be rejected. Further in vivo investigation is needed to better understand the impact of tannins in Desmanthus on N utilization

    Diet and genetics influence beef cattle performance and meat quality characteristics

    Get PDF
    A comprehensive review of the impact of tropical pasture grazing, nutritional supplementation during feedlot finishing and fat metabolism-related genes on beef cattle performance and meat-eating traits is presented. Grazing beef cattle on low quality tropical forages with less than 5.6% crude protein, 10% soluble starches and 55% digestibility experience liveweight loss. However, backgrounding beef cattle on high quality leguminous forages and feedlot finishing on high-energy diets increase meat flavour, tenderness and juiciness due to improved intramuscular fat deposition and enhanced mono- and polyunsaturated fatty acids. This paper also reviews the roles of stearoyl-CoA desaturase, fatty acid binding protein 4 and fatty acid synthase genes and correlations with meat traits. The review argues that backgrounding of beef cattle on Desmanthus, an environmentally well-adapted and vigorous tropical legume that can persistently survive under harsh tropical and subtropical conditions, has the potential to improve animal performance. It also identifies existing knowledge gaps and research opportunities in nutrition-genetics interactions aimed at a greater understanding of grazing nutrition, feedlot finishing performance, and carcass traits of northern Australian tropical beef cattle to enable red meat industry players to work on marbling, juiciness, tenderness and overall meat-eating characteristics

    Chemical composition and in situ degradability of Desmanthus spp. forage harvested at different maturity stages

    Get PDF
    This study evaluated the change in nutritive value and in situ degradability of Desmanthus spp. (desmanthus) cultivars JCU2; D. virgatus, JCU4; D. bicornutus and JCU7; D. leptophyllus harvested at varying maturity stages to test the hypothesis that the nutritive value and in situ degradability of desmanthus differ between cultivars and with maturity stage at harvest. In Experiment 1, desmanthus was harvested at 11, 38, 72 and 103 days of regrowth (maturity), separated into the leaf and stem portion, dried and analysed for dry matter (DM) and chemical composition. In Experiment 2, desmanthus was harvested 78, 122 and 168 days after planting (maturity). Samples were dried, and DM, crude protein (CP) and neutral detergent fibre (NDF) and acid detergent fibre (ADF) degradation were determined using the in situ technique with three fistulated Droughtmaster steers. The results showed an interaction between cultivar and maturity on the leaf to stem mass ratio, leaf CP, stem NDF and the leaf ADF (p ≤ 0.04). The leaf-to-stem mass ratio declined more steeply with maturity in JCU7 compared to JCU2 and JCU4 (p = 0.04), while there was a higher decline in leaf CP of JCU4 than JCU2 and JCU7 (p < 0.01). The total potentially degradable fraction of DM and CP did not differ between cultivars (p ≥ 0.30) but declined with maturity (p ≤ 0.04). However, the effective DM degradability at a high particle outflow rate was higher in JCU4 than in JCU7. Taken together, these results indicate that differences exist between cultivars, and higher livestock production may be achieved by utilising the different cultivars in a blend and at earlier maturity stages. Therefore, the hypothesis that nutritive value and in situ degradability of desmanthus differ between cultivars and with maturity stage at harvest was accepted

    Response to climate change: evaluation of methane emissions in Northern Australian beef cattle on a high quality diet supplemented with Desmanthus using open-circuit respiration chambers and GreenFeed emission monitoring systems

    Get PDF
    Simple Summary The beef industry in Northern Australia is characterized by an extensive grazing system in dry tropical rangelands defined by climate change indices of very low rainfall, a prolonged dry season and feeds of low nutritive value. In response, beef cattle need to be more efficient in converting the available drought-tolerant feeds to muscle, in an attempt to minimize greenhouse gas emissions. This study addressed the problem of reducing methane emissions from tropical beef cattle with the goal of decreasing the impact of climate change and greenhouse gas emissions in Northern Australia. The primary objective was to compare the effect of supplementing tropical beef cattle with both good quality lucerne and poor quality hay with increasing levels of different Desmanthus cultivars on in vivo methane emission. The results showed that in tropical beef cattle on high-quality diets, irrespective of cultivar and emission evaluation method, Desmanthus does not reduce methane emissions. Abstract The main objective of this study was to compare the effect of supplementing beef cattle with Desmanthus virgatus cv. JCU2, D. bicornutus cv. JCU4, D. leptophyllus cv. JCU7 and lucerne on in vivo methane (CH4) emissions measured by open-circuit respiration chambers (OC) or the GreenFeed emission monitoring (GEM) system. Experiment 1 employed OC and utilized sixteen yearling Brangus steers fed a basal diet of Rhodes grass (Chloris gayana) hay in four treatments—the three Desmanthus cultivars and lucerne (Medicago sativa) at 30% dry matter intake (DMI). Polyethylene glycol (PEG) was added to the diets to neutralize tannin binding and explore the effect on CH4 emissions. Experiment 2 employed GEM and utilized forty-eight animals allocated to four treatments including a basal diet of Rhodes grass hay plus the three Desmanthus cultivars in equal proportions at 0, 15, 30 and 45% DMI. Lucerne was added to equilibrate crude protein content in all treatments. Experiment 1 showed no difference in CH4 emissions between the Desmanthus cultivars, between Desmanthus and lucerne or between Desmanthus and the basal diet. Experiment 2 showed an increase in CH4 emissions in the three levels containing Desmanthus. It is concluded that on high-quality diets, Desmanthus does not reduce CH4 emissions

    Lipid metabolism, carcass characteristics and Longissimus dorsi muscle fatty acid composition of tropical crossbred beef cattle in response to Desmanthus spp. forage backgrounding

    Get PDF
    Lipid metabolism, carcass characteristics and fatty acid (FA) composition of the Longissimus dorsi (loin eye) muscle were evaluated in tropical crossbred steers backgrounded on Desmanthus spp. (desmanthus) with or without feedlot finishing. It was hypothesized that steers backgrounded on isonitrogenous diets augmented with incremental proportions of desmanthus will produce carcasses with similar characteristics and FA composition. Forty-eight Brahman, Charbray and Droughtmaster crossbred beef steers were backgrounded for 140 days on Rhodes grass (Chloris gayana) hay augmented with 0, 15, 30 or 45 percent desmanthus on dry matter basis. Lucerne (Medicago sativa) hay was added to the 0, 15 and 30 percent desmanthus diets to ensure that they were isonitrogenous with the 45 percent desmanthus diet. After backgrounding, the two heaviest steers in each pen were slaughtered and the rest were finished in the feedlot for 95 days before slaughter. Muscle biopsy samples were taken at the beginning and end of the backgrounding phase. Carcasses were sampled at slaughter for intramuscular fat (IMF) content, fat melting point (FMP) and FA composition analyses. Increasing the proportion of desmanthus in the diet led to a linear increase in docosanoic acid (p = 0.04) and omega-6/omega-3 polyunsaturated FA ratio (n-6/n-3 PUFA; p = 0.01), while docosahexaenoic acid decreased linearly (p = 0.01). Feedlot finishing increased hot carcass weight, subcutaneous fat depth at the P8 site and dressing percentage (p ≤ 0.04). The n-6/n-3 PUFA ratio was within the recommended < 5 for human diets. IMF was within the consumer-preferred ≥ 3% level for palatability. The hypothesis that steers backgrounded on isonitrogenous diets augmented with incremental proportions of desmanthus will produce similar carcass characteristics and FA composition was accepted. These findings indicate that a combination of tropical beef cattle backgrounding on desmanthus augmented forage and short-term feedlot finishing produces healthy and highly palatable meat

    A universal equation to predict methane production of forage-fed cattle in Australia

    Get PDF
    The methods for estimating methane emissions from cattle as used in the Australian national inventory are based on older data that have now been superseded by a large amount of more recent data. Recent data suggested that the current inventory emissions estimates can be improved. To address this issue, a total of 1034 individual animal records of daily methane production (MP) was used to reassess the relationship between MP and each of dry matter intake (DMI) and gross energy intake (GEI). Data were restricted to trials conducted in the past 10 years using open-circuit respiration chambers, with cattle fed forage-based diets (forage >70%). Results from diets considered to inhibit methanogenesis were omitted from the dataset. Records were obtained from dairy cattle fed temperate forages (220 records), beef cattle fed temperate forages (680 records) and beef cattle fed tropical forages (133 records). Relationships were very similar for all three production categories and single relationships for MP on a DMI or GEI basis were proposed for national inventory purposes. These relationships were MP (g/day) = 20.7 (±0.28) × DMI (kg/day) (R2 = 0.92, P < 0.001) and MP (MJ/day) = 0.063 (±0.008) × GEI (MJ/day) (R2 = 0.93, P < 0.001). If the revised MP (g/day) approach is used to calculate Australia’s national inventory, it will reduce estimates of emissions of forage-fed cattle by 24%. Assuming a global warming potential of 25 for methane, this represents a 12.6 Mt CO2-e reduction in calculated annual emissions from Australian cattle

    Towards sustainable sources of omega-3 long-chain polyunsaturated fatty acids in Northern Australian tropical crossbred beef steers through single nucleotide polymorphisms in lipogenic genes for meat eating quality

    Get PDF
    This study aimed to identify single nucleotide polymorphisms (SNP) in lipogenic genes of northern Australian tropically adapted crossbred beef cattle and to evaluate associations with healthy lipid traits of the Longissimus dorsi (loin eye) muscle. The hypothesis tested was that there are significant associations between SNP loci encoding for the fatty acid binding protein 4 (FABP4), stearoyl-CoA desaturase (SCD) and fatty acid synthase (FASN) genes and human health beneficial omega-3 long-chain polyunsaturated fatty acids (ω3 LC-PUFA) within the loin eye muscle of northern Australian crossbred beef cattle. Brahman, Charbray, and Droughtmaster crossbred steers were fed on Rhodes grass hay augmented with desmanthus, lucerne, or both, for 140 days and the loin eye muscle sampled for intramuscular fat (IMF), fat melting point (FMP), and fatty acid composition. Polymorphisms in FABP4, SCD, and FASN genes with significant effects on lipid traits were identified with next-generation sequencing. The GG genotype at the FABP4 g.44677239C>G locus was associated with higher proportion of linoleic acid than the CC and CG genotypes (p T locus indicated that the TT genotype had significantly higher eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids than GG genotype (p < 0.05). Significant correlations (p < 0.05) between FASN SNP and IMF, saturated and monounsaturated fatty acids were observed. These results provide insights into the contribution of lipogenic genes to intramuscular fat deposition and SNP marker-assisted selection for improvement of meat-eating quality, with emphasis on alternate and sustainable sources of ω3 LC-PUFA, in northern Australian tropical crossbred beef cattle, hence an acceptance of the tested hypothesis

    Single nucleotide polymorphisms in the fatty acid binding protein 4, fatty acid synthase and stearoyl-CoA desaturase genes influence carcass characteristics of tropical crossbred beef steers

    Get PDF
    This study explored the identification of single nucleotide polymorphisms (SNP) in fatty acid binding protein 4 (FABP4), stearoyl-CoA desaturase (SCD), and fatty acid synthase (FASN) genes that may influence the carcass traits of tropical crossbred beef cattle. The hypothesis tested was that SNP in the FABP4, SCD, and FASN genes are associated with chiller-assessed carcass traits of tropically adapted northern Australian crossbred beef cattle. Fifty Bos indicus and Bos taurus crossbred steers were backgrounded on either buffel grass only, or buffel grass and desmanthus mixed pastures for 147 days and finished in a commercial feedlot for 110 days. Steers were slaughtered within 48 h of leaving the feedlot within a lairage period not exceeding 12 h and carcasses graded 12 h after slaughter. Next-generation sequencing of the FASN, FABP4, and SCD genes identified multiple SNP loci that were correlated and significantly associated with carcass traits. The FABP4 g.44677205A>G locus was significantly associated with hump height and correlated with loin eye muscle area (EMA; p A locus was associated with subcutaneous fat depth and marbling score (p < 0.05). The CC genotype had a higher subcutaneous fat depth and marbling score (p < 0.05) than the AA genotype. Significant correlations were observed between carcass marbling score and subcutaneous fat depth within the FASN SNP locus (p < 0.05). Therefore, the hypothesis that SNP in the FABP4, SCD, and FASN genes are associated with chiller-assessed carcass traits of tropically adapted northern Australian crossbred beef cattle was accepted. These findings suggest that SNP in the FABP4, SCD, and FASN genes may be used in carcass grading and meat quality improvement through marker-assisted selection of northern Australian crossbred beef cattle
    • …
    corecore