110 research outputs found
CernVM Online and Cloud Gateway: a uniform interface for CernVM contextualization and deployment
In a virtualized environment, contextualization is the process of configuring
a VM instance for the needs of various deployment use cases. Contextualization
in CernVM can be done by passing a handwritten context to the user data field
of cloud APIs, when running CernVM on the cloud, or by using CernVM web
interface when running the VM locally. CernVM Online is a publicly accessible
web interface that unifies these two procedures. A user is able to define,
store and share CernVM contexts using CernVM Online and then apply them either
in a cloud by using CernVM Cloud Gateway or on a local VM with the single-step
pairing mechanism. CernVM Cloud Gateway is a distributed system that provides a
single interface to use multiple and different clouds (by location or type,
private or public). Cloud gateway has been so far integrated with OpenNebula,
CloudStack and EC2 tools interfaces. A user, with access to a number of clouds,
can run CernVM cloud agents that will communicate with these clouds using their
interfaces, and then use one single interface to deploy and scale CernVM
clusters. CernVM clusters are defined in CernVM Online and consist of a set of
CernVM instances that are contextualized and can communicate with each other.Comment: Conference paper at the 2013 Computing in High Energy Physics (CHEP)
Conference, Amsterda
Phononic Rogue Waves
We present a theoretical study of extreme events occurring in phononic
lattices. In particular, we focus on the formation of rogue or freak waves,
which are characterized by their localization in both spatial and temporal
domains. We consider two examples. The first one is the prototypical nonlinear
mass-spring system in the form of a homogeneous Fermi-Pasta-Ulam-Tsingou (FPUT)
lattice with a polynomial potential. By deriving an approximation based on the
nonlinear Schroedinger (NLS) equation, we are able to initialize the FPUT model
using a suitably transformed Peregrine soliton solution of the NLS, obtaining
dynamics that resembles a rogue wave on the FPUT lattice. We also show that
Gaussian initial data can lead to dynamics featuring rogue wave for
sufficiently wide Gaussians. The second example is a diatomic granular crystal
exhibiting rogue wave like dynamics, which we also obtain through an NLS
reduction and numerical simulations. The granular crystal (a chain of particles
that interact elastically) is a widely studied system that lends itself to
experimental studies. This study serves to illustrate the potential of such
dynamical lattices towards the experimental observation of acoustic rogue
waves.Comment: 9 pages, 4 figure
An ohmic RF MEMS switch for reconfigurable microstrip array antennas built on PCB
This paper presents the analysis, design and simulation of an ohmic RF MEMS switch specified for reconfigurable microstrip array antennas built on PCB via an integrated monolithic technology. The proposed switch will be used to allow antenna beamforming in the operating frequency range between 2.4GHz and 4GHz. This
application requires a great number of these switches to be integrated with an array of microstrip patch elements. The
proposed switch exhibits outstanding switching characteristics, following a relatively simple design, which ensures
reliability, robustness and high fabrication yield
Micro-CernVM: Slashing the Cost of Building and Deploying Virtual Machines
The traditional virtual machine building and and deployment process is
centered around the virtual machine hard disk image. The packages comprising
the VM operating system are carefully selected, hard disk images are built for
a variety of different hypervisors, and images have to be distributed and
decompressed in order to instantiate a virtual machine. Within the HEP
community, the CernVM File System has been established in order to decouple the
distribution from the experiment software from the building and distribution of
the VM hard disk images.
We show how to get rid of such pre-built hard disk images altogether. Due to
the high requirements on POSIX compliance imposed by HEP application software,
CernVM-FS can also be used to host and boot a Linux operating system. This
allows the use of a tiny bootable CD image that comprises only a Linux kernel
while the rest of the operating system is provided on demand by CernVM-FS. This
approach speeds up the initial instantiation time and reduces virtual machine
image sizes by an order of magnitude. Furthermore, security updates can be
distributed instantaneously through CernVM-FS. By leveraging the fact that
CernVM-FS is a versioning file system, a historic analysis environment can be
easily re-spawned by selecting the corresponding CernVM-FS file system
snapshot.Comment: Conference paper at the 2013 Computing in High Energy Physics (CHEP)
Conference, Amsterda
On the design of an Ohmic RF MEMS switch for reconfigurable microstrip antenna applications
This paper presents the analysis, design and simulation of a direct contact (dc) RF MEMS switch specified for reconfigurable microstrip array antennas. The proposed switch is indented to be built on PCB via a monolithic technology together with the antenna patches. The proposed switch will be used to allow antenna beamforming in the operating frequency range between 2GHz and 4GHz. This application requires a great number of these switches to be integrated with an array of microstrip patch elements. The proposed switch fulfills the switching characteristics as concerns the five requirements (loss, linearity, voltage/power handling, small size/power consumption, temperature), following a relatively simple design, which ensures reliability, robustness and high fabrication yiel
Deflation-based Identification of Nonlinear Excitations of the 3D Gross--Pitaevskii equation
We present previously unknown solutions to the 3D Gross--Pitaevskii equation
describing atomic Bose-Einstein condensates. This model supports elaborate
patterns, including excited states bearing vorticity. The discovered coherent
structures exhibit striking topological features, involving combinations of
vortex rings and multiple, possibly bent vortex lines. Although unstable, many
of them persist for long times in dynamical simulations. These solutions were
identified by a state-of-the-art numerical technique called deflation, which is
expected to be applicable to many problems from other areas of physics.Comment: 9 pages, 11 figure
Lattice Three Dimensional Skyrmions Revisited
In the continuum a skyrmion is a topological nontrivial map between Riemannian manifolds, an a stationary point of a particular energy functional. This paper describes lattice analogues of the aforementioned skyrmions, namely a natural way of using the topological properties of the three dimensional continuum Skyrme model to achieve topological stability on the lattice. In particular, using fixed point iterations, numerically exact lattice skyrmions are constructed: and their stability under small perturbation sis explored by means of linear stability analysis. While stable branches of such solutions are identified, it is also shown that they possess a particularly delicate bifurcation structure, especially so in the vicinity of the continuum limit. The corresponding bifurcation diagram is elucidated and a prescription for selecting the branch asymptoting to the well known continuum limit is given. Finally, the robustness of the spectrally stable solutions is corroborated by the virtue of direct numerical simulations
Bilateral nephrectomy for adult polycystic kidney disease does not affect the graft function of transplant patients and does not result in sensitisation
Background. Native nephrectomy in Adult Polycystic Kidney Disease (ADPKD) patients is a major operation with controversy related to timing and indications. We present our single centre experience in transplanted patients and future candidates for transplantation. Methods. Retrospective analysis from an anonymised database of bilateral nephrectomies for ADPKD patients. Results were reported as median, range, and percentage. Differences between groups were tested using ANOVA and t-test. Surgery was performed between January 2012 and July 2018. Results. Thirty-three patients underwent bilateral native nephrectomy for APKD. 18 had a functioning kidney transplant (transplant group, 55%) while 15 patients were on dialysis (dialysis group, 45%) at the time of surgery; 8 patients of the latter group (24% of the whole cohort) were eventually transplanted. 53% were males, with median age of 55 years (27-71). Indications to surgery were the following: space (symptoms related to the size of the native kidneys or need to create space for transplantation) (59%), recurrent cyst infection (36%), haematuria (15%), pain (24%), and weight loss associated with cystic alteration on imaging (3%). In the transplant group, postoperative kidney function was not affected; haemoglobin serum levels significantly dropped in the whole cohort: 121 (82-150) g/L, versus 108 (58-154) g/L (p<0.001), with 14 patients being transfused perioperatively. Elevation of anti-HLA antibodies was noted in one female patient on dialysis, with no change in DSA levels and no rejection after transplant for all 26 transplanted patients. Median postoperative length of hospital stay was 9 days (6-71). One patient died (3%) after six months. Median follow-up for the whole cohort was 282 days (13-1834). Histopathological examination revealed incidental renal neoplasms in five cases (15%): 1 pT1a papillary renal cell carcinoma and 4 papillary adenomas. Conclusions. Native nephrectomy for ADPKD could be safely performed in case of refractory symptoms, suspect of cancer or to create space for transplantation. It does not affect graft function or DSA status of transplanted patients or the prospect of transplantation of those on the waiting list
- …