587 research outputs found

    CMR2009: 5.04: Post-mortem analysis of gadolinium distribution in NSF subjects

    Full text link
    No Abstract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64915/1/323_ftp.pd

    Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-field MRI

    Get PDF
    With the applications of magnetic resonance imaging (MRI) at higher magnetic fields increasing, there is demand for MRI contrast agents with improved relaxivity at higher magnetic fields. Macromolecule-based contrast agents, such as protein-based ones, are known to yield significantly higher r(1) relaxivity at low fields, but tend to lose this merit when used as T-1 contrast agents (r(1)/r(2) = 0.5 similar to 1), with their r(1) decreasing and r(2) increasing as magnetic field strength increases. Here, we developed and characterized an in vivo applicable magnetic resonance (MR) positive contrast agent by conjugating Gd(III)-chelating agent complexes to lumazine synthase isolated from Aquifex aeolicus (AaLS). The r(1) relaxivity of Gd(III)-DOTA-AaLS-R108C was 16.49 mM(-1)s(-1) and its r(1)/r(2) ratio was 0.52 at the magnetic field strength of 7 T. The results of 3D MR angiography demonstrated the feasibility of vasculature imaging within 2 h of intravenous injection of the agent and a significant reduction in T-1 values were observed in the tumor region 7 h post-injection in the SCC-7 flank tumor model. Our findings suggest that Gd(III)-DOTA-AaLS-R108C could serve as a potential theranostic nanoplatform at high magnetic field strength.open0

    Coordination chemistry of amide-functionalised tetraazamacrocycles: structural, relaxometric and cytotoxicity studies

    No full text
    Three different tetraazamacrocyclic ligands containing four amide substituents that feature groups (namely allyl, styryl and propargyl groups) suitable for polymerisation have been synthesised. Gadolinium(III) complexes of these three ligands have been prepared as potential monomers for the synthesis of polymeric MRI contrast agents. To assess the potential of these monomers as MRI contrast agents, their relaxation enhancement properties and cytotoxicity have been determined. A europium(III) complex of one of these ligands (with propargyl substituents) is also presented together with its PARACEST properties. In addition, to gain further insight into the coordination chemistry of the tetra-propargyl substituted ligand, the corresponding zinc(II) and cadmium(II) complexes have been prepared. The X-ray crystal structures of the tetra-propargyl ligand and its corresponding gadolinium(III), zinc(II) and cadmium(II) complexes are also presented

    High-resolution Imaging of Myeloperoxidase Activity Sensors in Human Cerebrovascular Disease

    Get PDF
    Progress in clinical development of magnetic resonance imaging (MRI) substrate-sensors of enzymatic activity has been slow partly due to the lack of human efficacy data. We report here a strategy that may serve as a shortcut from bench to bedside. We tested ultra high-resolution 7T MRI (microMRI) of human surgical histology sections in a 3-year IRB approved, HIPAA compliant study of surgically clipped brain aneurysms. microMRI was used for assessing the efficacy of MRI substrate-sensors that detect myeloperoxidase activity in inflammation. The efficacy of Gd-5HT-DOTAGA, a novel myeloperoxidase (MPO) imaging agent synthesized by using a highly stable gadolinium (III) chelate was tested both in tissue-like phantoms and in human samples. After treating histology sections with paramagnetic MPO substrate-sensors we observed relaxation time shortening and MPO activity-dependent MR signal enhancement. An increase of normalized MR signal generated by ultra-short echo time MR sequences was corroborated by MPO activity visualization by using a fluorescent MPO substrate. The results of microMRI of MPO activity associated with aneurysmal pathology and immunohistochemistry demonstrated active involvement of neutrophils and neutrophil NETs as a result of pro-inflammatory signalling in the vascular wall and in the perivascular space of brain aneurysms

    Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons

    Get PDF
    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn2+ ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents

    The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors

    Get PDF
    International audienceWe recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps

    Dynamic Contrast-Enhanced MRI Assessment of Hyperemic Fractional Microvascular Blood Plasma Volume in Peripheral Arterial Disease: Initial Findings

    Get PDF
    OBJECTIVES: The aim of the current study was to describe a method that assesses the hyperemic microvascular blood plasma volume of the calf musculature. The reversibly albumin binding contrast agent gadofosveset was used in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) to assess the microvascular status in patients with peripheral arterial disease (PAD) and healthy controls. In addition, the reproducibility of this method in healthy controls was determined. MATERIALS AND METHODS: Ten PAD patients with intermittent claudication and 10 healthy control subjects were included. Patients underwent contrast-enhanced MR angiography of the peripheral arteries, followed by one DCE MRI examination of the musculature of the calf. Healthy control subjects were examined twice on different days to determine normative values and the interreader and interscan reproducibility of the technique. The MRI protocol comprised dynamic imaging of contrast agent wash-in under reactive hyperemia conditions of the calf musculature. Using pharmacokinetic modeling the hyperemic fractional microvascular blood plasma volume (V(p), unit: %) of the anterior tibial, gastrocnemius and soleus muscles was calculated. RESULTS: V(p) was significantly lower for all muscle groups in PAD patients (4.3±1.6%, 5.0±3.3% and 6.1±3.6% for anterior tibial, gastrocnemius and soleus muscles, respectively) compared to healthy control subjects (9.1±2.0%, 8.9±1.9% and 9.3±2.1%). Differences in V(p) between muscle groups were not significant. The coefficient of variation of V(p) varied from 10-14% and 11-16% at interscan and interreader level, respectively. CONCLUSIONS: Using DCE MRI after contrast-enhanced MR angiography with gadofosveset enables reproducible assessment of hyperemic fractional microvascular blood plasma volume of the calf musculature. V(p) was lower in PAD patients than in healthy controls, which reflects a promising functional (hemodynamic) biomarker for the microvascular impairment of macrovascular lesions

    Fibrin-targeting molecular MRI in inflammatory CNS disorders

    Get PDF
    BACKGROUND: Fibrin deposition is a fundamental pathophysiological event in the inflammatory component of various CNS disorders, such as multiple sclerosis (MS) and Alzheimer's disease. Beyond its traditional role in coagulation, fibrin elicits immunoinflammatory changes with oxidative stress response and activation of CNS-resident/peripheral immune cells contributing to CNS injury. PURPOSE: To investigate if CNS fibrin deposition can be determined using molecular MRI, and to assess its capacity as a non-invasive imaging biomarker that corresponds to inflammatory response and barrier impairment. MATERIALS AND METHODS: Specificity and efficacy of a peptide-conjugated Gd-based molecular MRI probe (EP2104-R) to visualise and quantify CNS fibrin deposition were evaluated. Probe efficacy to specifically target CNS fibrin deposition in murine adoptive-transfer experimental autoimmune encephalomyelitis (EAE), a pre-clinical model for MS (n = 12), was assessed. Findings were validated using immunohistochemistry and laser ablation inductively coupled plasma mass spectrometry. Deposition of fibrin in neuroinflammatory conditions was investigated and its diagnostic capacity for disease staging and monitoring as well as quantification of immunoinflammatory response was determined. Results were compared using t-tests (two groups) or one-way ANOVA with multiple comparisons test. Linear regression was used to model the relationship between variables. RESULTS: For the first time (to our knowledge), CNS fibrin deposition was visualised and quantified in vivo using molecular imaging. Signal enhancement was apparent in EAE lesions even 12-h after administration of EP2104-R due to targeted binding (M ± SD, 1.07 ± 0.10 (baseline) vs. 0.73 ± 0.09 (EP2104-R), p = .008), which could be inhibited with an MRI-silent analogue (M ± SD, 0.60 ± 0.14 (EP2104-R) vs. 0.96 ± 0.13 (EP2104-La), p = .006). CNS fibrin deposition corresponded to immunoinflammatory activity (R(2) = 0.85, p < .001) and disability (R(2) = 0.81, p < .001) in a model for MS, which suggests a clinical role for staging and monitoring. Additionally, EP2104-R showed substantially higher SNR (M ± SD, 6.6 ± 1 (EP2104-R) vs. 2.7 ± 0.4 (gadobutrol), p = .004) than clinically used contrast media, which increases sensitivity for lesion detection. CONCLUSIONS: Molecular imaging of CNS fibrin deposition provides an imaging biomarker for inflammatory CNS pathology, which corresponds to pathophysiological ECM remodelling and disease activity, and yields high signal-to-noise ratio, which can improve diagnostic neuroimaging across several neurological diseases with variable degrees of barrier impairment
    corecore