139 research outputs found

    Female labor supply and child care

    Get PDF
    We use household income tax data to estimate a structural model of female labor supply and utilization of paid child care outside the home. We find that child care costs have little impact on the participation decision of mothers of young children. However, they influence hours of work, as well as the decision to utilize paid child care. We use our results to simulate various policy reforms. Suppressing the APE (Parental Education Aid) would cause the participation rate in our sample to rise by 4 points and the proportion of mothers using outside paid care to rise by 2 points. Examining the effects on aggregate female labor supply of other policies that affect child care costs, we generally find that intensive effects caused by changes in working time are of the same order of magnitude as extensive effects due to changes in female participation.Child Care, female labor supply, fiscal policies

    Revisiting the improved core confinement simulations for FT-2 tokamak

    Get PDF
    In the present paper, we revisit observations performed in FT-2 tokamak from previous works. Improvements of core confinement are observed and believed to be caused by wide orbits going from collisionless to collisional regimes. Similar phenomena can occur whenever gradient lengths are comparable to the orbit widths at the top of the pedestal and the loss cone is continuously and increasingly filled by heated particles, collisions and turbulent effects. The lower hybrid heating operator is introduced into the ELMFIRE code to increase the ion temperature during the simulations while keeping the edge temperature low with logical boundary condition at the limiter. Particular focus is given on how the radial electric field deviates from the neoclassical value while introducing turbulent effects.Peer reviewe

    Midday measurements of leaf water potential and stomatal conductance are highly correlated with daily water use of Thompson Seedless grapevines

    Get PDF
    A study was conducted to determine the relationship between midday measurements of vine water status and daily water use of grapevines measured with a weighing lysimeter. Water applications to the vines were terminated on August 24th for 9 days and again on September 14th for 22 days. Daily water use of the vines in the lysimeter (ETLYS) was approximately 40 L vine−1 (5.3 mm) prior to turning the pump off, and it decreased to 22.3 L vine−1 by September 2nd. Pre-dawn leaf water potential (ΨPD) and midday Ψl on August 24th were −0.075 and −0.76 MPa, respectively, with midday Ψl decreasing to −1.28 MPa on September 2nd. Leaf g s decreased from ~500 to ~200 mmol m−2 s−1 during the two dry-down periods. Midday measurements of g s and Ψl were significantly correlated with one another (r = 0.96) and both with ETLYS/ETo (r = ~0.9). The decreases in Ψl, g s, and ETLYS/ETo in this study were also a linear function of the decrease in volumetric soil water content. The results indicate that even modest water stress can greatly reduce grapevine water use and that short-term measures of vine water status taken at midday are a reflection of daily grapevine water us

    Control of the hydrogen : deuterium isotope mixture using pellets in JET

    Get PDF
    Deuterium pellets are injected into an initially pure hydrogen H-mode plasma in order to control the hydrogen: deuterium (H:D) isotope mixture. The pellets are deposited in the outer 20% of the minor radius, similar to that expected in ITER, creating transiently hollow electron density profiles. A H: D isotope mixture of approximately 45%:55% is obtained in the core with a pellet fuelling throughput of Phi(pel) = 0.045P(aux)/T-e,T-ped similar to previous pellet fuelling experiments in pure deuterium. Evolution of the H: D mix in the core is reproduced using a simple model, although deuterium transport could be higher at the beginning of the pellet train compared with the flat-top phase.Peer reviewe

    Modification of the Alfven wave spectrum by pellet injection

    Get PDF
    Alfven eigenmodes driven by energetic particles are routinely observed in tokamak plasmas. These modes consist of poloidal harmonics of shear Alfven waves coupled by inhomogeneity in the magnetic field. Further coupling is introduced by 3D inhomogeneities in the ion density during the assimilation of injected pellets. This additional coupling modifies the Alfven continuum and discrete eigenmode spectrum. The frequencies of Alfven eigenmodes drop dramatically when a pellet is injected in JET. From these observations, information about the changes in the ion density caused by a pellet can be inferred. To use Alfven eigenmodes for MHD spectroscopy of pellet injected plasmas, the 3D MILD codes Stellgap and AE3D were generalised to incorporate 3D density profiles. A model for the expansion of the ionised pellet plasmoid along a magnetic field line was derived from the fluid equations. Thereby, the time evolution of the Alfven eigenfrequency is reproduced. By comparing the numerical frequency drop of a toroidal Alfven eigenmode (TAE) to experimental observations, the initial ion density of a cigar-shaped ablation region of length 4cm is estimated to be n(*) = 6.8 x 10(22) m(-3) at the TAE location (r/a approximate to 0.75). The frequency sweeping of an Alfven eigenmode ends when the ion density homogenises poloidally. Modelling suggests that the time for poloidal homogenisation of the ion density at the TAE position is tau(h) = 18 +/- 4 ms for inboard pellet injection, and tau(h) = 26 +/- 2 ms for outboard pellet injection. By reproducing the frequency evolution of the elliptical Alfven eigemnode (EAE), the initial ion density at the EAE location (r/a approximate to 0.9) can be estimated to be n(*) = 4.8 x 10(22) m(-3). Poloidal homogenisation of the ion density takes 2.7 times longer at the EAE location than at the TAE location for both inboard and outboard pellet injection.Peer reviewe

    Ion cyclotron resonance heating scenarios for DEMO

    Get PDF
    The present paper offers an overview of the potential of ion cyclotron resonance heating (ICRH) or radio frequency heating for the DEMO machine. It is found that various suitable heating schemes are available. Similar to ITER and in view of the limited bandwidth of about 10 MHz that can be achieved to ensure optimal functioning of the launcher, it is proposed to make core second harmonic tritium heating the key ion heating scheme, assisted by fundamental cyclotron heating He-3 in the early phase of the discharge; for the present design of DEMO-with a static magnetic field strength of B-o = 5.855 T-that places the T and 3He layers in the core for f = 60 MHz and suggests centering the bandwidth around that main operating frequency. In line with earlier studies for hot, dense plasmas in large-size magnetic confinement machines, it is shown that good single pass absorption is achieved but that the size as well as the operating density and temperature of the machine cause the electrons to absorb a non-negligible fraction of the power away from the core when core ion heating is aimed at. Current drive and alternative heating options are briefly discussed and a dedicated computation is done for the traveling wave antenna, proposed for DEMO in view of its compatibility with substantial antenna-plasma distances. The various tasks that ICRH can fulfill are briefly listed. Finally, the impact of transport and the sensitivity of the obtained results to changes in the machine parameters is commented on.Peer reviewe

    Co-Crystal Structures of PKG Iβ (92–227) with cGMP and cAMP Reveal the Molecular Details of Cyclic-Nucleotide Binding

    Get PDF
    Cyclic GMP-dependent protein kinases (PKGs) are central mediators of the NO-cGMP signaling pathway and phosphorylate downstream substrates that are crucial for regulating smooth muscle tone, platelet activation, nociception and memory formation. As one of the main receptors for cGMP, PKGs mediate most of the effects of cGMP elevating drugs, such as nitric oxide-releasing agents and phosphodiesterase inhibitors which are used for the treatment of angina pectoris and erectile dysfunction, respectively. configuration, with a conserved threonine residue anchoring both cyclic phosphate and guanine moieties. The structure of CNBD-A in the absence of bound cyclic nucleotide was similar to that of the cyclic nucleotide bound structures. Surprisingly, isothermal titration calorimetry experiments demonstrated that CNBD-A binds both cGMP and cAMP with a relatively high affinity, showing an approximately two-fold preference for cGMP. conformation through its interaction with Thr193 and an unusual cis-peptide forming residues Leu172 and Cys173. Although these studies provide the first structural insights into cyclic nucleotide binding to PKG, our ITC results show only a two-fold preference for cGMP, indicating that other domains are required for the previously reported cyclic nucleotide selectivity

    Interpretative and predictive modelling of Joint European Torus collisionality scans

    Get PDF
    Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as □(→┬E ) X □(→┬B ) shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges

    A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors

    Get PDF
    The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices
    corecore