1 research outputs found
Galactic periodicity and the oscillating G model
We consider the model involving the oscillation of the effective
gravitational constant that has been put forward in an attempt to reconcile the
observed periodicity in the galaxy number distribution with the standard
cosmological models. This model involves a highly nonlinear dynamics which we
analyze numerically. We carry out a detailed study of the bound that
nucleosynthesis imposes on this model. The analysis shows that for any assumed
value for (the total energy density) one can fix the value of
(the baryonic energy density) in such a way as to
accommodate the observational constraints coming from the
primordial abundance. In particular, if we impose the inflationary value
the resulting baryonic energy density turns out to be . This result lies in the very narrow range allowed by the observed values of the primordial
abundances of the other light elements. The remaining fraction of
corresponds to dark matter represented by a scalar field.Comment: Latex file 29 pages with no figures. Please contact M.Salgado for
figures. A more careful study of the model appears in gr-qc/960603