443 research outputs found
Recommended from our members
Design, fabrication, and testing of a helium-cooled module for the ITER divertor
The International Thermonuclear Reactor (ITER) will have a single-null divertor with total power flow of 200 MW and a peak heat flux of about 5 MW/m{sup 2}. The reference coolant for the divertor is water. However, helium is a viable alternative and offers advantages from safety considerations, such as excellent radiation stability and chemical inertness. In order to prove the feasibility of helium cooling at ITER relevant heat flux conditions, General Atomics designed, fabricated, and tested a helium-cooled divertor module. The module was made from dispersion strengthened copper, with a heat flux surface 25 mm wide and 80 mm long, designed for twice the ITER divertor heat flux. Different techniques were examined to enhance the heat transfer, which in turn reduced the flow and pumping power required to cool the module. It was concluded that an extended surface was the most practical solution. An optimization study was performed to find the best extended surface parameters. The optimum extended surface geometry consisted of fins: 10 mm high, 0.4 mm thick with a 1 mm pitch. It was estimated to require a pumping power of 150 W to remove 20 kW of power. This is more than an order of magnitude reduction in pumping power requirement, compared to smooth surface. The module was fabricated by electric discharge machining (EDM) process. The testing was carried out at SNLA during August 1993. The testing confirmed the design calculations. The peak heat flux during the test was 10 MW/m{sup 2} applied over a surface area of 20 cm{sup 2}. The pumping power calculated from flow rate and pressure drop measurement was about 160 W, which was less than 1% of the power removed. It is planned to test the module to higher temperature limits and higher heat fluxes during coming months. As a result of this effort we conclude that helium cooling of the ITER divertor is feasible without requiring a very large helium pressure or a large pumping power
Recommended from our members
Engineering design of a radiative divertor for DIII-D
A new divertor configuration is being developed for the DIII-D tokamak. This divertor will operate in the radiative mode. Experiments and modeling form the basis for the new design. The Radiative Divertor reduces the heat flux on the divertor plates by dispersing the power with radiation in the divertor region. In addition, the Radiative Divertor structure will allow density control in plasma shapes required for advanced tokamak operation. The divertor structure allows for operation in either double-null or single-null plasma configurations. Four independently controlled divertor cryopumps will enable pumping at either the inboard (upper and lower) or the outboard (upper and lower) divertor plates. An upgrade to the DIII-D cryogenic system is part of this project. The increased capabilities of the cryogenic system will allow delivery of liquid helium and nitrogen to the three new cryopumps. The Radiative Divertor design is very flexible, and will allow physics studies of the effects of slot width and length. Radiative Divertor diagnostics are being designed in parallel to provide comprehensive measurements for diagnosing the divertor. The Radiative divertor installation is scheduled for late 1996. Engineering experience gained in the DIII-D Advanced Divertor program form a foundation for the design work on the Radiative Divertor
Recommended from our members
The DIII-D Radiative Divertor Project: Status and plans
New divertor hardware is being designed and fabricated for the Radiative Divertor modification of the DIII-D tokamak. The installation of the hardware has been separated into two phases, the first phase starting in October of 1996 and the second and final phase, in 1998. The phased approach enables the continuation of the divertor characterization research in the lower divertor while providing pumping for density control in high triangularity, single- or double-null advanced tokamak discharges. When completed, the Radiative Divertor Project hardware will provide pumping at all four strike points of a double-null, high triangularity discharge and provide baffling of the neutral particles from transport back to the core plasma. By puffing neutral gas into the divertor region, a reduction in the heat flux on the target plates will be be demonstrated without a large rise in core density. This reduction in heat flux is accomplished by dispersing the power with radiation in the divertor region. Experiments and modeling have formed the basis for the new design. The capability of the DIII-D cryogenic system is being upgraded as part of this project. The increased capability of the cryogenic system will allow delivery of liquid helium and nitrogen to three new cryopumps. Physics studies on the effects of slot width and length can be accomplished easily with the design of the Radiative Divertor. The slot width can be varied by installing graphite tiles of different geometry. The change in slot length, the distance from the X-point to the target plate, requires relocating the structure vertically and can be completed in about 6-8 weeks. Radiative Divertor diagnostics are being designed to provide comprehensive measurements for diagnosing the divertor. Required diagnostic modifications will be minimal for Phase 1, but extensive for Phase 2 installation. These Phase 2 diagnostics will be required to fully diagnose the high triangularity discharges in the divertor slots
Recommended from our members
Manufacturing development of low activation vanadium alloys
General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported
Melatonin protects against alterations in hippocampal cholinergic system, trace metals and oxidative stress induced by gestational and lactational exposure to cadmium
Dietary exposure to cadmium, even at lower doses, can lead to free radical induced neurotoxicity, neurobehavioral changes and alteration in neurotransmitters. Such changes are likely to be more pronounced in the developing brain due to incompleteness of blood brain barrier (BBB). Hippocampus being the seat of intelligence has a role in learning and cognitive behavior and any damage to hippocampus during developmental stage is likely to result in neurodegenerative changes in later life. To this end, fetal and neonatal exposure to cadmium was induced by exposing pregnant dams of Swiss albino strain throughout the period of gestation and following parturition up till 5th day post partum (pp) through drinking water (3ppm/animal/day). The neonates were sacrificed on day 6 pp and indices of oxidative stress, levels of trace elements and changes in cholinergic system were evaluated in the hippocampus.
Increased lipid peroxidation, surge in reactive oxygen species (ROS), depressed antioxidant defense, increased accumulation of cadmium, differential alterations in trace elements and decreased activity of AChE were the features of cadmium toxicity. Simultaneous administration of melatonin to cadmium challenged animals offset these detrimental changes. The results suggest that melatonin co-administration can effectively protect against the adverse
effects of cadmium on endogenous antioxidant status, changes in trace metal concentrations
and compromised hippocampal cholinergic system
Recommended from our members
DESIGN, FABRICATION, INSTALLATION, TESTING AND INITIAL RESULTS OF IN-VESSEL CONTROL COILS FOR DIII-D
OAK-B135 Since 1995, DIII-D has performed correction of magnetic field imperfections using a set of six external picture frame coils located on the vessel mid-plane. In 2000, these coils also demonstrated benefits when used for feedback of the resistive wall mode, an instability that limits the plasma performance at high beta. Modeling has shown that substantial performance improvements could be achieved by installing new coils inside the vessel and expanding the poloidal coverage above and below the mid-plane. Two prototype internal coils were installed in 2001 and were power tested successfully after several bakes to 350 C. A full set of twelve internal coils and related magnetic sensors are now operational in the DIII-D tokamak. The design requirements for the new coil system was to maximize the magnetic field at the plasma edge, operate with a frequency range of dc to 1000 Hz, and fit behind the existing graphite wall tiles. The coil design adopted and installed is a water-cooled hollow copper conductor insulated with polyamide and housed inside a stainless steel tube that forms a vacuum boundary. The coil is rigidly mounted to the inside of the vacuum vessel. The primary challenge in the design of these coils wa sin joining of both the copper conductor and the stainless tube without overheating the polyamide insulator. Elastic-plastic analysis was used to demonstrate acceptable thermal stresses during baking conditions. Analysis determined the optimum water cooling channel diameter. The coils were tested in high toroidal field to the limit of the power supply of 4.5 kA DC with inductance-limited current for frequencies between 300 Hz and 1000 Hz. Recent results are presented
Vereckei criteria as a diagnostic tool amongst emergency medicine residents to distinguish between ventricular tachycardia and supra-ventricular tachycardia with aberrancy
SummaryBackgroundAccurate electrocardiographic (ECG) differentiation of ventricular tachycardia (VT) from supraventricular tachycardia with aberrancy (SVT-A) on ECG is key to therapeutic decision-making in the emergency department (ED) setting.ObjectiveThe goal of this study was to test the accuracy and agreement of emergency medicine residents to differentiate VT from SVT-A using the Vereckei criteria.MethodsSix emergency medicine residents volunteered to participate in the review of 114 ECGs from 86 patients with a diagnosis of either VT or SVT-A based on an electrophysiology study. The resident reviewers initially read 12-lead ECGs blinded to clinical information, and then one week later reviewed a subset of the same 12-lead ECGs unblinded to clinical information.ResultsOne reviewer was excluded for failing to follow study protocol and one reviewer was excluded for reviewing less than 50 blinded ECGs. The remaining four reviewers each read 114 common ECGs blinded to clinical data and their diagnostic accuracy for VT was 74% (sensitivity 70%, specificity 80%), 75% (sensitivity 76%, specificity 73%), 61% (sensitivity 81%, specificity 25%), and 68% (sensitivity 84%, specificity 40%). The intraclass correlation coefficient (ICC) was 0.31 (95% CI 0.22–0.42). Eliminating two of the four reviewers who left a disproportionately high number of ECGs unclassified resulted in an increase in overall mean diagnostic accuracy (70–74%) and agreement (0.31–0.50) in the two remaining reviewers. Three reviewers read 45 common ECGs unblinded to clinical information and had accuracies for VT 93%, 93% and 78%.ConclusionThe new single lead Vereckei criteria, when applied by emergency medicine residents achieved only fair-to-good individual accuracy and moderate agreement. The addition of clinical information resulted in substantial improvement in test characteristics. Further improvements (accuracy and simplification) of algorithms for differentiating VT from SVT-A would be helpful prior to clinical implementation
Recommended from our members
DESIGN, FABRICATION, INSTALLATION AND TESTING OF IN-VESSEL CONTROL COILS FOR DIII-D
OAK A271 DESIGN, FABRICATION, INSTALLATION AND TESTING OF IN-VESSEL CONTROL COILS FOR DIII-D. Since 1995, DIII-D has performed correction of magnetic field imperfections using a set of six external picture frame coils located on the vessel mid-plane. Recently, these coils have also demonstrated significant benefits when used for feedback of the resistive wall mode, an instability that limits the plasma performance at high beta. Modeling has shown that substantial performance improvements can be achieved by installing new coils inside the vessel and expanding the poloidal coverage above and below the mid-plane. Two prototype internal coils were installed in 2001 and have been tested successfully. installation of a set of twelve internal coils and magnetic sensors in the DIII-D tokamak is to be completed in December 2002. The design requirement for the new coil system was to maximize the magnetic field at the plasma edge, operate with a frequency range of dc to 1000 Hz, and fit behind the existing graphite wall tiles. The coil design adopted and installed is a water-cooled hollow copper conductor insulated with polyamide and housed inside a stainless steel tube that forms a vacuum boundary. The coil is rigidly mounted to the inside of the vacuum vessel. The primary challenge in the design of these coils was in joining of both the copper conductor and the stainless tube without overheating the polyamide insulator
Prenatal diagnosis of Caudal Regression Syndrome : a case report
BACKGROUND: Caudal regression is a rare syndrome which has a spectrum of congenital malformations ranging from simple anal atresia to absence of sacral, lumbar and possibly lower thoracic vertebrae, to the most severe form which is known as sirenomelia. Maternal diabetes, genetic predisposition and vascular hypoperfusion have been suggested as possible causative factors. CASE PRESENTATION: We report a case of caudal regression syndrome diagnosed in utero at 22 weeks' of gestation. Prenatal ultrasound examination revealed a sudden interruption of the spine and "frog-like" position of lower limbs. Termination of pregnancy and autopsy findings confirmed the diagnosis. CONCLUSION: Prenatal ultrasonographic diagnosis of caudal regression syndrome is possible at 22 weeks' of gestation by ultrasound examination
- …