3,714 research outputs found

    Magnetic Susceptibility of an integrable anisotropic spin ladder system

    Full text link
    We investigate the thermodynamics of a spin ladder model which possesses a free parameter besides the rung and leg couplings. The model is exactly solved by the Bethe Ansatz and exhibits a phase transition between a gapped and a gapless spin excitation spectrum. The magnetic susceptibility is obtained numerically and its dependence on the anisotropy parameter is determined. A connection with the compounds KCuCl3, Cu2(C5H12N2)2Cl4 and (C5H12N)2CuBr4 in the strong coupling regime is made and our results for the magnetic susceptibility fit the experimental data remarkably well.Comment: 12 pages, 12 figures included, submitted to Phys. Rev.

    Internal relaxation time in immersed particulate materials

    Full text link
    We study the dynamics of the solid to liquid transition for a model material made of elastic particles immersed in a viscous fluid. The interaction between particle surfaces includes their viscous lubrication, a sharp repulsion when they get closer than a tuned steric length and their elastic deflection induced by those two forces. We use Soft Dynamics to simulate the dynamics of this material when it experiences a step increase in the shear stress and a constant normal stress. We observe a long creep phase before a substantial flow eventually establishes. We find that the typical creep time relies on an internal relaxation process, namely the separation of two particles driven by the applied stress and resisted by the viscous friction. This mechanism should be relevant for granular pastes, living cells, emulsions and wet foams

    Exact solution for random walks on the triangular lattice with absorbing boundaries

    Full text link
    The problem of a random walk on a finite triangular lattice with a single interior source point and zig-zag absorbing boundaries is solved exactly. This problem has been previously considered intractable.Comment: 10 pages, Latex, IOP macro

    Motion and homogenization of vortices in anisotropic Type II superconductors

    Get PDF
    The motion of vortices in an anisotropic superconductor is considered. For a system of well-separated vortices, each vortex is found to obey a law of motion analogous to the local induction approximation, in which velocity of the vortex depends upon the local curvature and orientation. A system of closely packed vortices is then considered, and a mean field model is formulated in which the individual vortex lines are replaced by a vortex density

    Minimal Unitary Models and The Closed SU(2)-q Invariant Spin Chain

    Get PDF
    We consider the Hamiltonian of the closed SU(2)qSU(2)_{q} invariant chain. We project a particular class of statistical models belonging to the unitary minimal series. A particular model corresponds to a particular value of the coupling constant. The operator content is derived. This class of models has charge-dependent boundary conditions. In simple cases (Ising, 3-state Potts) corresponding Hamiltonians are constructed. These are non-local as the original spin chain.Comment: 19 pages, latex, no figure

    The Generation of Magnetic Fields Through Driven Turbulence

    Full text link
    We have tested the ability of driven turbulence to generate magnetic field structure from a weak uniform field using three dimensional numerical simulations of incompressible turbulence. We used a pseudo-spectral code with a numerical resolution of up to 1443144^3 collocation points. We find that the magnetic fields are amplified through field line stretching at a rate proportional to the difference between the velocity and the magnetic field strength times a constant. Equipartition between the kinetic and magnetic energy densities occurs at a scale somewhat smaller than the kinetic energy peak. Above the equipartition scale the velocity structure is, as expected, nearly isotropic. The magnetic field structure at these scales is uncertain, but the field correlation function is very weak. At the equipartition scale the magnetic fields show only a moderate degree of anisotropy, so that the typical radius of curvature of field lines is comparable to the typical perpendicular scale for field reversal. In other words, there are few field reversals within eddies at the equipartition scale, and no fine-grained series of reversals at smaller scales. At scales below the equipartition scale, both velocity and magnetic structures are anisotropic; the eddies are stretched along the local magnetic field lines, and the magnetic energy dominates the kinetic energy on the same scale by a factor which increases at higher wavenumbers. We do not show a scale-free inertial range, but the power spectra are a function of resolution and/or the imposed viscosity and resistivity. Our results are consistent with the emergence of a scale-free inertial range at higher Reynolds numbers.Comment: 14 pages (8 NEW figures), ApJ, in press (July 20, 2000?
    • …
    corecore