50,087 research outputs found
Nucleation of quark matter in neutron stars cores
We consider the general conditions of quark droplets formation in high
density neutron matter. The growth of the quark bubble (assumed to contain a
sufficiently large number of particles) can be described by means of a
Fokker-Planck equation. The dynamics of the nucleation essentially depends on
the physical properties of the medium it takes place. The conditions for quark
bubble formation are analyzed within the frameworks of both dissipative and
non-dissipative (with zero bulk and shear viscosity coefficients) approaches.
The conversion time of the neutron star to a quark star is obtained as a
function of the equation of state of the neutron matter and of the microscopic
parameters of the quark nuclei. As an application of the obtained formalism we
analyze the first order phase transition from neutron matter to quark matter in
rapidly rotating neutron stars cores, triggered by the gravitational energy
released during the spinning down of the neutron star. The endothermic
conversion process, via gravitational energy absorption, could take place, in a
very short time interval, of the order of few tens seconds, in a class of dense
compact objects, with very high magnetic fields, called magnetars.Comment: 31 pages, 2 figures, to appear in Ap
Zero-temperature criticality in the two-dimensional gauge glass model
The zero-temperature critical state of the two-dimensional gauge glass model
is investigated. It is found that low-energy vortex configurations afford a
simple description in terms of gapless, weakly interacting vortex-antivortex
pair excitations. A linear dielectric screening calculation is presented in a
renormalization group setting that yields a power-law decay of spin-wave
stiffness with distance. These properties are in agreement with low-temperature
specific heat and spin-glass susceptibility data obtained in large-scale
multi-canonical Monte Carlo simulations.Comment: 4 pages, 4 figure
Negative Link Prediction in Social Media
Signed network analysis has attracted increasing attention in recent years.
This is in part because research on signed network analysis suggests that
negative links have added value in the analytical process. A major impediment
in their effective use is that most social media sites do not enable users to
specify them explicitly. In other words, a gap exists between the importance of
negative links and their availability in real data sets. Therefore, it is
natural to explore whether one can predict negative links automatically from
the commonly available social network data. In this paper, we investigate the
novel problem of negative link prediction with only positive links and
content-centric interactions in social media. We make a number of important
observations about negative links, and propose a principled framework NeLP,
which can exploit positive links and content-centric interactions to predict
negative links. Our experimental results on real-world social networks
demonstrate that the proposed NeLP framework can accurately predict negative
links with positive links and content-centric interactions. Our detailed
experiments also illustrate the relative importance of various factors to the
effectiveness of the proposed framework
Advances in delimiting the Hilbert-Schmidt separability probability of real two-qubit systems
We seek to derive the probability--expressed in terms of the Hilbert-Schmidt
(Euclidean or flat) metric--that a generic (nine-dimensional) real two-qubit
system is separable, by implementing the well-known Peres-Horodecki test on the
partial transposes (PT's) of the associated 4 x 4 density matrices). But the
full implementation of the test--requiring that the determinant of the PT be
nonnegative for separability to hold--appears to be, at least presently,
computationally intractable. So, we have previously implemented--using the
auxiliary concept of a diagonal-entry-parameterized separability function
(DESF)--the weaker implied test of nonnegativity of the six 2 x 2 principal
minors of the PT. This yielded an exact upper bound on the separability
probability of 1024/{135 pi^2} =0.76854$. Here, we piece together
(reflection-symmetric) results obtained by requiring that each of the four 3 x
3 principal minors of the PT, in turn, be nonnegative, giving an
improved/reduced upper bound of 22/35 = 0.628571. Then, we conclude that a
still further improved upper bound of 1129/2100 = 0.537619 can be found by
similarly piecing together the (reflection-symmetric) results of enforcing the
simultaneous nonnegativity of certain pairs of the four 3 x 3 principal minors.
In deriving our improved upper bounds, we rely repeatedly upon the use of
certain integrals over cubes that arise. Finally, we apply an independence
assumption to a pair of DESF's that comes close to reproducing our numerical
estimate of the true separability function.Comment: 16 pages, 9 figures, a few inadvertent misstatements made near the
end are correcte
Interaction driven metal-insulator transition in strained graphene
The question of whether electron-electron interactions can drive a metal to
insulator transition in graphene under realistic experimental conditions is
addressed. Using three representative methods to calculate the effective
long-range Coulomb interaction between -electrons in graphene and solving
for the ground state using quantum Monte Carlo methods, we argue that without
strain, graphene remains metallic and changing the substrate from SiO to
suspended samples hardly makes any difference. In contrast, applying a rather
large -- but experimentally realistic -- uniform and isotropic strain of about
seems to be a promising route to making graphene an antiferromagnetic
Mott insulator.Comment: Updated version: 6 pages, 3 figure
Hyperon polarization in e^-p --> e^-HK with polarized electron beams
We apply the picture proposed in a recent Letter for transverse hyperon
polarization in unpolarized hadron-hadron collisions to the exclusive process
e^-p --> e^-HK such as e^-p-->e^-\Lambda K^+, e^-p --> e^-\Sigma^+ K^0, or
e^-p--> e^-\Sigma^0 K^+, or the similar process e^-p\to e^-n\pi^+ with
longitudinally polarized electron beams. We present the predictions for the
longitudinal polarizations of the hyperons or neutron in these reactions, which
can be used as further tests of the picture.Comment: 15 pages, 2 figures. submitted to Phys. Rev.
- …