4,586 research outputs found

    Barriers for developing more robust organic arable farming systems in practice

    Get PDF
    There is a gap between the scientific idea of robust and economically viable organic arable farming systems with optimized crop rotations for nutrient and pest management and how these systems look like in practice. In order to explore this gap, we visited and interviewed ten organic arable farms in Denmark. Our main findings are: 1) Organic arable farming operates in a very dynamic and changing environment in terms of prizing and market opportunities, and the main focus of the farm managements was the coping strategy within this changing environment; 2) The farming systems were continuously changing and developing, buying and renting more land, changing manure agreements and other forms of cooperation and arrangements; 3) Short term profit was paid much more attention than more theoretical expectation on long term profit or opportunities in relation to optimizing the production system. This again seems logical in relation to the very dynamic world that the farmers have to operate within; 4) Most of the farmers do not see their farm as a coherent system but as a coordination of a series of separate operations, which means that most decisions are taken with specific reference to the individual field in at the present situation without considering the long-term effects. Management focus is thus much more on solving problems as they are occurring, by adjusting their practice, than it is on developing a robust system preventing problems to occur. This partial focus is also strongly supported by the way in which extension services mostly operate

    Towards low-dimensional hole systems in Be-doped GaAs nanowires

    Full text link
    GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly-confined 0D and 1D hole systems with strong spin-orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately-doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly-doped nanowires and inability to reach a clear off-state under gating for the highly-doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio ~10410^{4}, and sub-threshold slope 50 mV/dec at T = 4 K. Lastly, we made a device featuring a moderately-doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantization highlighting the potential for future quantum device studies in this material system

    Efficient qubit detection using alkali earth metal ions and a double STIRAP process

    Full text link
    We present a scheme for robust and efficient projection measurement of a qubit consisting of the two magnetic sublevels in the electronic ground state of alkali earth metal ions. The scheme is based on two stimulated Raman adiabatic passages (STIRAP) involving four partially coherent laser fields. We show how the efficiency depends on experimentally relevant parameters: Rabi frequencies, pulse widths, laser linewidths, one- and two-photon detunings, residual laser power, laser polarization and ion motion.Comment: 14 pages, 15 figure

    Quantum Numbers for Excitations of Bose-Einstein Condensates in 1D Optical Lattices

    Full text link
    The excitation spectrum and the band structure of a Bose-Einstein condensate in a periodic potential are investigated. Analyses within full 3D systems, finite 1D systems, and ideal periodic 1D systems are compared. We find two branches of excitations in the spectra of the finite 1D model. The band structures for the first and (part of) the second band are compared between a finite 1D and the fully periodic 1D systems, utilizing a new definition of a effective wavenumber and a phase-slip number. The upper and lower edges of the first gap coincide well between the two cases. The remaining difference is explained by the existence of the two branches due to the finite-size effect.Comment: 5 pages, 9 figure

    Coastal flooding in Denmark – future outlook

    Get PDF

    Patient–physician communication concerning participation in cancer chemotherapy trials

    Get PDF
    Cancer patients demand a high level of involvement in decisions concerning treatment. Many patients are informed about experimental trials, and especially the first consultation may be crucial for the future communication and treatment process. Patients with nonresectable non-small-cell lung cancer or colorectal cancer informed about experimental chemotherapy completed a questionnaire on satisfaction with the communication process, general attitude towards experimental treatments, the substance of information, and personal contact with the physician following their first consultation in a medical oncology unit. Physicians completed a questionnaire on their perception of the patients’ satisfaction. Among 68 physician–cancer patient pairs, 29 patients were informed on chemotherapy in randomised trials and 39 in nonrandomised studies. The general attitude towards experimental treatment was positive or very positive in 71% of patients. Information on the treatment was perceived as completely adequate in 93% of patients informed on randomised and in 67% informed on nonrandomised trials. Physicians underestimated the patients’ satisfaction with the overall communication process, the personal contact, the patients’ perceived sufficiency of the specific treatment information and their ability to decide on study entry. In conclusion, considerable differences were observed between patients informed about experimental chemotherapy in randomised and nonrandomised trials, both with respect to their perception of how adequate the information on the specific treatments were, and whether it was sufficient for decisions on study entry. This study type effect should be accounted for in future evaluations of communication and patient satisfaction. The data also support the fact that cancer patients have a desire for and ability to understand rather detailed and comprehensive treatment information

    Stability and correlations in dilute two-dimensional boson systems

    Full text link
    The hyperspherical adiabatic expansion method is used to describe correlations in a symmetric boson system rigorously confined to two spatial dimensions. The hyperangular eigenvalue equation turns out to be almost independent of the hyperradius, whereas the solutions are strongly varying with the strength of the attractive two-body potentials. Instability is encountered in hyperangular, hyperradial, and mean-field equations for almost identical strengths inversely proportional to the particle number. The derived conditions for stability are similar to mean-field conditions and closely related to the possible occurrence of the Thomas and Efimov effects. Renormalization in mean-field calculations for two spatial dimensions is probably not needed.Comment: 5 pages, two figures, submitted to Phys. Rev. A, second version contains added discussion, especially of renormalizatio

    Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots

    Full text link
    We describe an electrodynamic mechanism for coherent, quantum mechanical coupling between spacially separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum electrodynamics. We investigate several potential applications of this technique which have varying degrees of complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated electron spin states while only virtually populating fast-decaying superpositions of charge states. This represents an effective, controllable long-range interaction, which may facilitate implementation of quantum information processing with electron spin qubits and potentially allow coupling to other quantum systems such as atomic or superconducting qubits.Comment: 8 pages, 5 figure
    • …
    corecore