5,190 research outputs found

    Computation of Acoustical Parameters of Pure Liquids through Simple C-program

    Get PDF

    SU(2)-invariant spin-1/2 Hamiltonians with RVB and other valence bond phases

    Full text link
    We construct a family of rotationally invariant, local, S=1/2 Klein Hamiltonians on various lattices that exhibit ground state manifolds spanned by nearest-neighbor valence bond states. We show that with selected perturbations such models can be driven into phases modeled by well understood quantum dimer models on the corresponding lattices. Specifically, we show that the perturbation procedure is arbitrarily well controlled by a new parameter which is the extent of decoration of the reference lattice. This strategy leads to Hamiltonians that exhibit i) Z2Z_2 RVB phases in two dimensions, ii) U(1) RVB phases with a gapless ``photon'' in three dimensions, and iii) a Cantor deconfined region in two dimensions. We also construct two models on the pyrochlore lattice, one model exhibiting a Z2Z_2 RVB phase and the other a U(1) RVB phase.Comment: 16 pages, 15 figures; 1 figure and some references added; some minor typos fixe

    Biot-Savart correlations in layered superconductors

    Full text link
    We discuss the superconductor to normal phase transition in an infinite-layered type-II superconductor in the limit where the Josephson coupling between layers is negligible. We model each layer as a neutral gas of thermally excited pancake vortices. We assume the dominant interaction between vortices in the same and in different layers is the electromagnetic interaction between the screening currents induced by these vortices. Our main result, obtained by exactly solving the leading order renormalization group flow, is that the phase transition in this model is a Kosterlitz--Thouless transition despite being a three--dimensional system. While the transition itself is driven by the unbinding of two-dimensional pancake vortices, an RG analysis of the low temperature phase and a mean-field theory of the high temperature phase reveal that both phases possess three-dimensional correlations. An experimental consequence of this is that the jump in the measured in-plane superfluid stiffness, which is a universal quantity in 2d Kosterlitz-Thouless theory, will receive a small non--universal correction (of order 1% in Bi2_2Sr2_2CaCu2_2O8+x_{8+x}). This overall picture places some claims expressed in the literature on a more secure analytical footing and also resolves some conflicting views.Comment: 16 pages, 2 figures; minor typos corrected, references adde

    Unusual Lymphomas Developing in Chronic Lymphocytic Leukemia

    Get PDF
    We report three patients with chronic lymphocytic leukemia (CLL) who developed malignant lymphomas of unusual character and modes of presentation. Two of the patients had received low doses of chlorambucil for several years before they developed malignant lymphoma, diffuse, large cell type (LCL). In one of these patients LCL manifested as a grossly evident osteolytic lesion. In the second patient LCL developed initially as a localized lesion in the iliac bone. Both patients died within a few weeks after LCL was diagnosed. The third patient, who was found to have CLL during a routine examination, did not receive any therapy for the leukemia. Within six months the patient developed diffuse malignant lymphoma, mixed small and large cell type, with total extinction of the leukemic component. The disease responded favorably to chemotherapy for lymphoma, and the patient is alive with minimal residual disease at this time. Immunohistochemical studies in all three patients suggested transformation or dedifferentiation of the original neoplastic lymphoid clone rather than de novo appearance of another neoplasm

    Selection from read-only memory with limited workspace

    Full text link
    Given an unordered array of NN elements drawn from a totally ordered set and an integer kk in the range from 11 to NN, in the classic selection problem the task is to find the kk-th smallest element in the array. We study the complexity of this problem in the space-restricted random-access model: The input array is stored on read-only memory, and the algorithm has access to a limited amount of workspace. We prove that the linear-time prune-and-search algorithm---presented in most textbooks on algorithms---can be modified to use Θ(N)\Theta(N) bits instead of Θ(N)\Theta(N) words of extra space. Prior to our work, the best known algorithm by Frederickson could perform the task with Θ(N)\Theta(N) bits of extra space in O(NlgN)O(N \lg^{*} N) time. Our result separates the space-restricted random-access model and the multi-pass streaming model, since we can surpass the Ω(NlgN)\Omega(N \lg^{*} N) lower bound known for the latter model. We also generalize our algorithm for the case when the size of the workspace is Θ(S)\Theta(S) bits, where lg3NSN\lg^3{N} \leq S \leq N. The running time of our generalized algorithm is O(Nlg(N/S)+N(lgN)/lgS)O(N \lg^{*}(N/S) + N (\lg N) / \lg{} S), slightly improving over the O(Nlg(N(lgN)/S)+N(lgN)/lgS)O(N \lg^{*}(N (\lg N)/S) + N (\lg N) / \lg{} S) bound of Frederickson's algorithm. To obtain the improvements mentioned above, we developed a new data structure, called the wavelet stack, that we use for repeated pruning. We expect the wavelet stack to be a useful tool in other applications as well.Comment: 16 pages, 1 figure, Preliminary version appeared in COCOON-201

    Observation of Superfluid Flow in a Bose-Einstein Condensed Gas

    Full text link
    We have studied the hydrodynamic flow in a Bose-Einstein condensate stirred by a macroscopic object, a blue detuned laser beam, using nondestructive {\em in situ} phase contrast imaging. A critical velocity for the onset of a pressure gradient has been observed, and shown to be density dependent. The technique has been compared to a calorimetric method used previously to measure the heating induced by the motion of the laser beam.Comment: 4 pages, 5 figure

    Closed Loop Testing of Microphonics Algorithms Using a Cavity Emulator

    Full text link
    An analog crystal filter based cavity emulator is modified with reverse biased varactor diodes to provide a tuning range of around 160 Hz. The piezo drive voltage of the resonance controller is used to detune the cavity through the bias voltage. A signal conditioning and summing circuit allows the introduction of microphonics disturbance from a signal source or using real microphonics data from cavity testing. This setup is used in closed loop with a cavity controller and resonance controller to study the effectiveness of resonance control algorithms suitable for superconducting cavities.Comment: Poster presented at LLRF Workshop 2023 (LLRF2023, arXiv: 2311.00901

    LLRF System for the Fermilab PIP-II Superconducting LINAC

    Full text link
    PIP-II is an 800 MEV superconducting linac that is in the initial acceleration chain for the Fermilab accelerator complex. The RF system consists of a warm front-end with an ion source, RFQ and buncher cavities along with 25 superconducting cryo-modules comprised of five different acceleration β\beta. The LLRF system for the LINAC has to provide field and resonance control for a total of 125 RF cavities.The LLRF system design is in the final design review phase and will enter the production phase next year. The PIP-II project is an international collaboration with various partner labs contributing subsystems. The LLRF system design for the PIP-II Linac is presented and the specification requirements and system performance in various stages of testing are described in this paper.Comment: Talk presented at LLRF Workshop 2023 (LLRF2023, arXiv: 2311.00900
    corecore