64 research outputs found

    River Influences on Shelf Ecosystems: Introduction and Synthesis

    Get PDF
    River Influences on Shelf Ecosystems (RISE) is the first comprehensive interdisciplinary study of the rates and dynamics governing the mixing of river and coastal waters in an eastern boundary current system, as well as the effects of the resultant plume on phytoplankton standing stocks, growth and grazing rates, and community structure. The RISE Special Volume presents results deduced from four field studies and two different numerical model applications, including an ecosystem model, on the buoyant plume originating from the Columbia River. This introductory paper provides background information on variability during RISE field efforts as well as a synthesis of results, with particular attention to the questions and hypotheses that motivated this research. RISE studies have shown that the maximum mixing of Columbia River and ocean water occurs primarily near plume liftoff inside the estuary and in the near field of the plume. Most plume nitrate originates from upwelled shelf water, and plume phytoplankton species are typically the same as those found in the adjacent coastal ocean. River-supplied nitrate can help maintain the ecosystem during periods of delayed upwelling. The plume inhibits iron limitation, but nitrate limitation is observed in aging plumes. The plume also has significant effects on rates of primary productivity and growth (higher in new plume water) and microzooplankton grazing (lower in the plume near field and north of the river mouth); macrozooplankton concentration (enhanced at plume fronts); offshelf chlorophyll export; as well as the development of a chlorophyll ?shadow zone? off northern Oregon

    Trajectory generation for autonomous soaring UAS

    Get PDF
    This article was published in the International Journal of Automation and Computing [© Springer Verlag and the Institute of Automation, Chinese Academy of Sciences ]. The definitive version is available at: http://link.springer.com/article/10.1007/s11633-012-0641-5As unmanned aerial vehicles are expected to do more and more advanced tasks, improved range and persistence is required. This paper presents a method of using shallow layer cumulus convection to extend the range and duration of small unmanned aerial vehicles. A simulation model of an X-models XCalubur electric motor-glider is used in combination with a refined 4D parametric thermal model to simulate soaring flight. The parametric thermal model builds on previous successful models with refinements to more accurately describe the weather in northern Europe. The implementation of the variation of the MacCready setting is discussed. Methods for generating efficient trajectories are evaluated and recommendations are made regarding implementation

    Adaptive Significance of the Formation of Multi-Species Fish Spawning Aggregations near Submerged Capes

    Get PDF
    BACKGROUND: Many fishes are known to spawn at distinct geomorphological features such as submerged capes or "promontories," and the widespread use of these sites for spawning must imply some evolutionary advantage. Spawning at these capes is thought to result in rapid offshore transport of eggs, thereby reducing predation levels and facilitating dispersal to areas of suitable habitat. METHODOLOGY/PRINCIPAL FINDINGS: To test this "off-reef transport" hypothesis, we use a hydrodynamic model and explore the effects of topography on currents at submerged capes where spawning occurs and at similar capes where spawning does not occur, along the Mesoamerican Barrier Reef. All capes modeled in this study produced eddy-shedding regimes, but specific eddy attributes differed between spawning and non-spawning sites. Eddies at spawning sites were significantly stronger than those at non-spawning sites, and upwelling and fronts were the products of the eddy formation process. Frontal zones, present particularly at the edges of eddies near the shelf, may serve to retain larvae and nutrients. Spawning site eddies were also more predictable in terms of diameter and longevity. Passive particles released at spawning and control sites were dispersed from the release site at similar rates, but particles from spawning sites were more highly aggregated in their distributions than those from control sites, and remained closer to shore at all times. CONCLUSIONS/SIGNIFICANCE: Our findings contradict previous hypotheses that cape spawning leads to high egg dispersion due to offshore transport, and that they are attractive for spawning due to high, variable currents. Rather, we show that current regimes at spawning sites are more predictable, concentrate the eggs, and keep larvae closer to shore. These attributes would confer evolutionary advantages by maintaining relatively similar recruitment patterns year after year

    Optimization of glides for constant wind fields and course headings

    No full text

    Aerodynamic Performance of a Wingtip-Mounted Tractor Propeller Configuration in Windmilling and Energy-Harvesting Conditions

    No full text
    Wingtip-mounted tractor propellers enhance aerodynamic performance by attenuating the wingtip vortex with the propeller slipstream and inducing a favorable upwash on the wing. However, the close coupling between propeller and wing means that wing performance may be degraded when the propeller produces negative thrust. This paper analyzes the aerodynamic interaction effects due to the wingtip-mounted propeller under such conditions, that occur when the propeller is windmilling or used for energy harvesting. Experiments in a low-speed wind tunnel and simulations with a RANS solver highlighted the drop in wing performance at negative thrust for the case with inboard-up rotation. The interaction phenomena are reversed compared to the beneficial propulsive case, since the inflow velocity and angle of attack are now reduced on the part of the wing washed by the slipstream. Because of the reversal of the swirl in the slipstream at negative thrust, the interaction is then favorable with outboard-up rotation. For the considered propeller, that was not optimized for operation at negative thrust, the energy-harvesting efficiency was about 10%. This can be improved for future designs by optimizing the blade geometry and pitch setting of the propeller.Flight Performance and Propulsio
    • 

    corecore