5,981 research outputs found

    Inferring the dynamics of underdamped stochastic systems

    Full text link
    Many complex systems, ranging from migrating cells to animal groups, exhibit stochastic dynamics described by the underdamped Langevin equation. Inferring such an equation of motion from experimental data can provide profound insight into the physical laws governing the system. Here, we derive a principled framework to infer the dynamics of underdamped stochastic systems from realistic experimental trajectories, sampled at discrete times and subject to measurement errors. This framework yields an operational method, Underdamped Langevin Inference (ULI), which performs well on experimental trajectories of single migrating cells and in complex high-dimensional systems, including flocks with Viscek-like alignment interactions. Our method is robust to experimental measurement errors, and includes a self-consistent estimate of the inference error

    Learning dynamical models of single and collective cell migration: a review

    Full text link
    Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualizing the emergent behavior of cells. We first review how this inference problem has been addressed in freely migrating cells on two-dimensional substrates and in structured, confining systems. Moreover, we discuss how data-driven methods can be connected with molecular mechanisms, either by integrating mechanistic bottom-up biophysical models, or by performing inference on subcellular degrees of freedom. Finally, we provide an overview of applications of data-driven modelling in developing frameworks for cell-to-cell variability in behaviours, and for learning the collective dynamics of multicellular systems. Specifically, we review inference and machine learning approaches to recover cell-cell interactions and collective dynamical modes, and how these can be integrated into physical active matter models of collective migration

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    Assessing Human Error Against a Benchmark of Perfection

    Full text link
    An increasing number of domains are providing us with detailed trace data on human decisions in settings where we can evaluate the quality of these decisions via an algorithm. Motivated by this development, an emerging line of work has begun to consider whether we can characterize and predict the kinds of decisions where people are likely to make errors. To investigate what a general framework for human error prediction might look like, we focus on a model system with a rich history in the behavioral sciences: the decisions made by chess players as they select moves in a game. We carry out our analysis at a large scale, employing datasets with several million recorded games, and using chess tablebases to acquire a form of ground truth for a subset of chess positions that have been completely solved by computers but remain challenging even for the best players in the world. We organize our analysis around three categories of features that we argue are present in most settings where the analysis of human error is applicable: the skill of the decision-maker, the time available to make the decision, and the inherent difficulty of the decision. We identify rich structure in all three of these categories of features, and find strong evidence that in our domain, features describing the inherent difficulty of an instance are significantly more powerful than features based on skill or time.Comment: KDD 2016; 10 page

    Randomly Broken Nuclei and Disordered Systems

    Get PDF
    Similarities between models of fragmenting nuclei and disordered systems in condensed matter suggest corresponding methods. Several theoretical models of fragmentation investigated in this fashion show marked differences, indicating possible new methods for distinguishing models using yield data. Applying nuclear methods to disordered systems also yields interesting results.Comment: 10 pages, 4 figure

    Slip Stacking

    Get PDF
    Slip stacking has been onperational at Fermilab Main Injector (MI) since December 2004. The proton beam intensity for the anti proton production was increased by 70% with the stacking scheme. We plan to use it also for the Numi operation which is providing beams to the MINOS neutrino experiment
    corecore