4 research outputs found

    An Arithmetic-Trigonometric Optimization Algorithm with Application for Control of Real-Time Pressure Process Plant

    No full text
    This paper proposes a novel hybrid arithmetic–trigonometric optimization algorithm (ATOA) using different trigonometric functions for complex and continuously evolving real-time problems. The proposed algorithm adopts different trigonometric functions, namely sin, cos, and tan, with the conventional sine cosine algorithm (SCA) and arithmetic optimization algorithm (AOA) to improve the convergence rate and optimal search area in the exploration and exploitation phases. The proposed algorithm is simulated with 33 distinct optimization test problems consisting of multiple dimensions to showcase the effectiveness of ATOA. Furthermore, the different variants of the ATOA optimization technique are used to obtain the controller parameters for the real-time pressure process plant to investigate its performance. The obtained results have shown a remarkable performance improvement compared with the existing algorithms

    A novel fractional-order dead-time compensating controller for the wireless networks

    No full text
    Abstract Wireless technology is becoming increasingly critical in industrial environments in recent years, and the popular wireless standards are WirelessHART, ZigBee, WLAN and ISA100.11a, commonly used in closed-loop systems. However, wireless networks in closed-loop control experience packet loss or drops, system delay and data threats, leading to process instability and catastrophic system failure. To prevent such issues, it is necessary to implement dead-time compensation control. Traditional techniques like model predictive and predictive PI controllers are frequently employed. However, these methods’ performance is sluggish in wireless networks, with processes having long dead times and set-point variations, potentially affecting network and process performance. Therefore, this paper proposes a fractional calculus-based predictive PI compensator for wired and wireless networks in the process control industries. The proposed technique has been simulated and evaluated on industrial process models, including pressure, flow, and temperature, where measurement and control are carried out wirelessly. The wireless network’s performance has been evaluated based on packet loss, reduced throughput, and increased system latency. The proposed compensator outperformed traditional methods, demonstrating superior set-point tracking, disturbance rejection, and delay compensation characteristics in the performance evaluations of the first, second, and third-order systems. Overall, the findings indicate that the proposed compensator enhances wireless networks’ performance in the process control industry and improves system stability and reliability by reducing almost half of the overshoot and settling an average of 8.3927% faster than the conventional techniques in most of the systems

    Design of PIDD<i><sup>α</sup></i> Controller for Robust Performance of Process Plants

    No full text
    Managing industrial processes in real-time is challenging due to the nonlinearity and sensitivity of these processes. This unpredictability can cause delays in the regulation of these processes. The PID controller family is commonly used in these situations, but their performance is inadequate in systems and surroundings with varying set-points, longer dead times, external noises, and disturbances. Therefore, this research has developed a novel controller structure for PIDDα that incorporates the second derivative term from PIDD2 while exclusively using fractional order parameters for the second derivative term. The controllers’ robust performance has been evaluated on four simulation plants: first order, second order with time delay, third-order magnetic levitation systems, and fourth-order automatic voltage regulation systems. The controllers’ performance has also been evaluated on experimental models of pressure and flow processes. The proposed controller exhibits the least overshoot among all the systems tested. The overshoot for the first-order systems is 9.63%, for the third-order magnetic levitation system, it is 12.82%, and for the fourth-order automatic voltage regulation system, it is only 0.19%. In the pressure process plant, the overshoot is only 4.83%. All controllers for the second-order systems have a time delay, while the flow process plant has no overshoot. The proposed controller demonstrates superior settling times in various systems. For first-order systems, the settling time is 14.26 s, while in the pressure process plant, the settling time is 8.9543 s. Similarly, the proposed controllers for the second-order system with a time delay and the flow process plant have the same settling time of 46.0495 s. In addition, the proposed controller results in the lowest rise time for three different systems. The rise time is only 0.0075 s for the third-order magnetic levitation system, while the fourth-order automatic voltage regulation system has a rise time of 0.0232 s. Finally, for the flow process plant, the proposed controller has the least rise time of 25.7819 s. Thus, in all the cases, the proposed controller results in a more robust controller structure that provides the desired performance of a regular PIDD2 controller, offering better dynamic responses, shorter settling times, faster rise times, and reduced overshoot. Based on the analysis, it is evident that PIDDα outperforms both PID and FOPID control techniques due to its ability to produce a more robust control signal

    Reliable Fault Tolerant-Based Multipath Routing Model for Industrial Wireless Control Systems

    No full text
    Communication in industrial wireless networks necessitates reliability and precision. Besides, the existence of interference or traffic in the network must not affect the estimated network properties. Therefore, data packets have to be sent within a certain time frame and over a reliable connection. However, the working scenarios and the characteristics of the network itself make it vulnerable to node or link faults, which impact the transmission reliability and overall performance. This article aims to introduce a developed multipath routing model, which leads to cost-effective planning, low latency and high reliability of industrial wireless mesh networks, such as the WirelessHART networks. The multipath routing model has three primary paths, and each path has a backup node. The backup node stores the data transmitted by the parent node to grant communication continuity when primary nodes fail. The multipath routing model is developed based on optimal network planning and deployment algorithm. Simulations were conducted on a WirelessHART simulator using Network Simulator (NS2). The performance of the developed model is compared with the state-of-the-art. The obtained results reveal a significant reduction in the average network latency, low power consumption, better improvement in expected network lifetime, and enhanced packet delivery ratio which improve network reliability
    corecore