1,031 research outputs found

    Policy Gradients for CVaR-Constrained MDPs

    Full text link
    We study a risk-constrained version of the stochastic shortest path (SSP) problem, where the risk measure considered is Conditional Value-at-Risk (CVaR). We propose two algorithms that obtain a locally risk-optimal policy by employing four tools: stochastic approximation, mini batches, policy gradients and importance sampling. Both the algorithms incorporate a CVaR estimation procedure, along the lines of Bardou et al. [2009], which in turn is based on Rockafellar-Uryasev's representation for CVaR and utilize the likelihood ratio principle for estimating the gradient of the sum of one cost function (objective of the SSP) and the gradient of the CVaR of the sum of another cost function (in the constraint of SSP). The algorithms differ in the manner in which they approximate the CVaR estimates/necessary gradients - the first algorithm uses stochastic approximation, while the second employ mini-batches in the spirit of Monte Carlo methods. We establish asymptotic convergence of both the algorithms. Further, since estimating CVaR is related to rare-event simulation, we incorporate an importance sampling based variance reduction scheme into our proposed algorithms

    Optimal consumption and investment with bounded downside risk for power utility functions

    Full text link
    We investigate optimal consumption and investment problems for a Black-Scholes market under uniform restrictions on Value-at-Risk and Expected Shortfall. We formulate various utility maximization problems, which can be solved explicitly. We compare the optimal solutions in form of optimal value, optimal control and optimal wealth to analogous problems under additional uniform risk bounds. Our proofs are partly based on solutions to Hamilton-Jacobi-Bellman equations, and we prove a corresponding verification theorem. This work was supported by the European Science Foundation through the AMaMeF programme.Comment: 36 page

    EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    Get PDF
    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments

    CVaR minimization by the SRA algorithm

    Get PDF
    Using the risk measure CV aR in �nancial analysis has become more and more popular recently. In this paper we apply CV aR for portfolio optimization. The problem is formulated as a two-stage stochastic programming model, and the SRA algorithm, a recently developed heuristic algorithm, is applied for minimizing CV aR

    Inf-convolution of G-expectations

    Full text link
    In this paper we will discuss the optimal risk transfer problems when risk measures are generated by G-expectations, and we present the relationship between inf-convolution of G-expectations and the inf-convolution of drivers G.Comment: 23 page

    Sliding Phases in XY-Models, Crystals, and Cationic Lipid-DNA Complexes

    Full text link
    We predict the existence of a totally new class of phases in weakly coupled, three-dimensional stacks of two-dimensional (2D) XY-models. These ``sliding phases'' behave essentially like decoupled, independent 2D XY-models with precisely zero free energy cost associated with rotating spins in one layer relative to those in neighboring layers. As a result, the two-point spin correlation function decays algebraically with in-plane separation. Our results, which contradict past studies because we include higher-gradient couplings between layers, also apply to crystals and may explain recently observed behavior in cationic lipid-DNA complexes.Comment: 4 pages of double column text in REVTEX format and 1 postscript figur

    Evolutionary multi-stage financial scenario tree generation

    Full text link
    Multi-stage financial decision optimization under uncertainty depends on a careful numerical approximation of the underlying stochastic process, which describes the future returns of the selected assets or asset categories. Various approaches towards an optimal generation of discrete-time, discrete-state approximations (represented as scenario trees) have been suggested in the literature. In this paper, a new evolutionary algorithm to create scenario trees for multi-stage financial optimization models will be presented. Numerical results and implementation details conclude the paper

    Multivariate risks and depth-trimmed regions

    Get PDF
    We describe a general framework for measuring risks, where the risk measure takes values in an abstract cone. It is shown that this approach naturally includes the classical risk measures and set-valued risk measures and yields a natural definition of vector-valued risk measures. Several main constructions of risk measures are described in this abstract axiomatic framework. It is shown that the concept of depth-trimmed (or central) regions from the multivariate statistics is closely related to the definition of risk measures. In particular, the halfspace trimming corresponds to the Value-at-Risk, while the zonoid trimming yields the expected shortfall. In the abstract framework, it is shown how to establish a both-ways correspondence between risk measures and depth-trimmed regions. It is also demonstrated how the lattice structure of the space of risk values influences this relationship.Comment: 26 pages. Substantially revised version with a number of new results adde
    corecore