239 research outputs found

    Infrared Quasi Fixed Points and Mass Predictions in the MSSM II: Large tan(beta) Scenario

    Full text link
    We consider the infrared quasi fixed point solutions of the renormalization group equations for the Yukawa couplings and soft supersymmetry breaking parameters in the MSSM in the \underline{large tanβ\tan\beta} regime. The existence of IR quasi fixed points together with the values of gauge couplings, third generation quarks, lepton and Z-boson masses allows one to predict masses of the Higgs bosons and SUSY particles as functions of the only free parameter, m1/2m_{1/2}, or the gluino mass. The lightest Higgs boson mass for MSUSY1M_{SUSY} \approx 1 TeV is found to be mh=128.20.47.1±5m_h=128.2-0.4-7.1 \pm 5 GeV for μ>0\mu>0 and mh=120.60.13.8±5m_h=120.6-0.1-3.8 \pm 5 GeV for μ<0\mu<0.Comment: 15 pages, LateX file with 4 eps figures, corrected numbers, new column in table, last versio

    A New Model for Fermion Masses in Supersymmetric Grand Unified Theories

    Full text link
    We present a simple model for fermion mass matrices and quark mixing in the context of supersymmetric grand unified theories and show its agreement with experiment. Our model realizes the GUT mass relations md=3mem_d=3m_e, ms=mμ/3m_s= m_\mu/3, mb=mτm_b=m_\tau in a new way and is easily consistent with values of mtm_t suggested by MSSM fits to LEP data.Comment: Latex, 8 p., ITP-SB-93-37 (revised version contains minor changes in some wording and citations; no changes in analytic or numerical results.

    MSSM and Large tanβtan\beta from SUSY Trinification

    Full text link
    We construct a supersymmetric model based on the semi-simple gauge group SU(3)c×SU(3)L×SU(3)RSU(3)_c \times SU(3)_L \times SU(3)_R with the relation tanβmt/mbtan\beta \simeq m_t/m_b automatically arising from its structure. The model below a scale 1016\sim 10^{16} GeV gives naturally rise just to the minimal supersymmetric standard model and therefore to the presently favored values for sin2θwsin^2 \theta_w and αs\alpha_s without fields in representations higher than the fundamental.Comment: 9 pages, LaTeX, UT-STPD-3-9

    Predictions for Constrained Minimal Supersymmetry with Bottom-Tau Mass Unification

    Full text link
    We examine the Constrained Minimal Supersymmetric Standard Model (CMSSM) with an additional requirement of strict b - tau unification in the region of small tan(beta). We find that the parameter space becomes completely limited below about 1 TeV by physical constraints alone, without a fine-tuning constraint. We study the resulting phenomenological consequences, and point out several ways of falsifying the adopted b - tau unification assumption. We also comment on the effect of a constraint from the non-observation of proton decay.Comment: Michigan preprint UM-TH-94-03, LaTeX, 18 pages with inline figures (figures included in uuencoded file). Complete PS file also available by anonymous FTP to williams.physics.lsa.umich.edu in /pub/preprints/UM-TH-94-03.ps.Z or by e-mailing reques

    Comment On ``Grand Unification and Supersymmetric Threshold"

    Full text link
    Barbieri and Hall have argued that threshold effects at the scale of grand-unification wipe out predictions on the SUSY scale, M_S. Using triviality arguments we give upper bounds on ultraheavy particles, while proton stability gives lower bounds on the mass of the higgs color-triplet. We find no useful lower bound on the Σ\Sigma supermultiplet, but if the strong coupling constant is as large as recent experiments suggest, unification in the minimal SUSY SU(5) model requires that the SigmaSigma masses be 107MV\sim 10^{-7}M_V and that the color octet and weak triplet be split in mass by a factor of \sim100.Comment: 6 pages (revised

    Top-Down Approach to Unified Supergravity Models

    Full text link
    We introduce a new approach for studying unified supergravity models. In this approach all the parameters of the grand unified theory (GUT) are fixed by imposing the corresponding number of low energy observables. This determines the remaining particle spectrum whose dependence on the low energy observables can now be investigated. We also include some SUSY threshold corrections that have previously been neglected. In particular the SUSY threshold corrections to the fermion masses can have a significant impact on the Yukawa coupling unification.Comment: 19 pages, uuencoded compressed ps file, DESY 94-057 (paper format corrected

    Third Generation Effects on Fermion Mass Predictions in Supersymmetric Grand Unified Theories

    Full text link
    Relations among fermion masses and mixing angles at the scale of grand unification are modified at lower energies by renormalization group running induced by gauge and Yukawa couplings. In supersymmetric theories, the bb quark and τ\tau lepton Yukawa couplings, as well as the tt quark coupling, may cause significant running if tanβ\tan \beta, the ratio of Higgs field expectation values, is large. We present approximate analytic expressions for the scaling factors for fermion masses and CKM matrix elements induced by all three third generation Yukawa couplings. We then determine how running caused by the third generation of fermions affects the predictions arising from three possible forms for the Yukawa coupling matrices at the GUT scale: the Georgi-Jarlskog, Giudice, and Fritzsch textures.Comment: phyzzx, 26 pp., 6 figures not included, e-mailable upon request, JHU-TIPAC-93000

    Scale dependence of the quark masses and mixings: leading order

    Full text link
    We consider the Renormalization Group Equations (RGE) for the couplings of the Standard Model and its extensions. Using the hierarchy of the quark masses and of the Cabibbo-Kobayashi-Maskawa (CKM) matrix our argument is that a consistent approximation for the RGE should be based on the parameter λ=V^ud0.22\lambda= |\hat{V}_{ud}| \approx0.22. We consider the RGE in the approximation where we neglect all the relative terms of the order λ4\sim\lambda^{4} and higher. Within this approximation we find the exact solution of the evolution equations of the quark Yukawa couplings and of the vacuum expectation value of the Higgs field. Then we derive the evolution of the observables: quark masses, CKM matrix, Jarlskog invariant, Wolfenstein parameters of the CKM matrix and the unitarity triangle. We show that the angles of the unitarity triangle remain constant. This property may restrict the possibility of new symmetries or textures at the grand unification scale.Comment: 15 pages, 4 figures, author of one reference adde
    corecore