180 research outputs found

    Robust tool condition monitoring in Ti6Al4V milling based on specific force coefficients and growing self-organizing maps

    Get PDF
    Tool condition monitoring (TCM) is a mean to optimize production systems trying to use cutting tool life at its best. Nevertheless, nowadays available TCM algorithms typically lack robustness in order to be consistently applied in industrial scenarios. In this paper, an unsupervised artificial intelligence technique, based on Growing Self-Organizing Maps (GSOM), is presented in synergy with real-time specific force coefficients (SFC) estimation through the regression of instantaneous cutting forces. The conceived approach allows robustly mapping the SFC, exploiting process parameters and similarity to manage the variability of their estimation due to unmodelled phenomena, like machine dynamics and tool run-out. The devised approach allowed detecting the tool end-of-life in cutting tests with variable lubrication, machine tool and cutting speed, through the adoption of a self-starting control chart running on real-time clustered data. The solution was validated through the comparison of the GSOM framework with respect to the optimized self-starting control chart applied without GSOM clustering. The GSOM reached a root mean squared percentage error (RMSPE) of 13.2% with respect to 56.1% obtained with the analogous control chart in a full-set optimization scenario. When optimised on tests for a unique machine tool and tested on another machine tool, GSOM scored an RMSPE of 34.5%, whereas the optimized control chart scored 64.5%

    A novel application of cryogenics in dieless sheet metal piercing

    Get PDF
    In tube punching, if the internal die is necessary to properly pierce the tube avoiding its collapse, it also represents a bottleneck to a rapid change of the punching set. In this research an innovative dieless tube punching approach has been conceived and studied. The use of a cryogenic fluid to force the material ductile-brittle transition is a way to limit the sheet deformation during the piercing process. The analysis of the innovative cryogenic punching was carried out both adopting numerical and experimental methodologies. A finite element FE model of the cryogenic punching was developed and updated in two stages. First, experimental tensile tests, performed at cryogenic temperatures, were used to characterize some material properties. Secondly, some piercing tests in cryogenic conditions were performed at different velocities and temperatures to fine update the model. A validation session was carried out to assess the model and the process feasibility. It was found that the FE model reproduced the experimental results within a maximum estimation error of 10% on both the punching force and tube deflection. Results showed that both the increment of the punching velocity and especially the decrement of the punching temperature could be the only viable solution for making the tube dieless punching industrially feasible

    The analysis of tool life and wear mechanisms in spindle speed variation machining

    Get PDF
    Regenerative chatter vibrations generally limit the achievable material removal rate in machining. The diffusion of spindle speed variation (SSV) as a chatter suppression strategy is mainly restricted to academy and research centers. A lack of knowledge concerning the effects of non-stationary machining is still limiting its use in real shop floors. This research is focused on the effects of spindle speed variation technique on tool duration and on wear mechanisms. No previous researches have been performed on this specific topic. Tool wear tests in turning were carried out following a factorial design: cutting speed and cutting speed modulation were the investigated factors. The carbide life was the observed process response. A statistical approach was used to analyze the effects of the factors on the tool life. Moreover, the analysis was extended to the wear mechanisms involved during both constant speed machining and SSV. The worn-out carbide surfaces were examined under a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. Significant differences were appreciated. It was observed that SSV tends to detach the coatings of the inserts, entailing a mechanism that is quite unusual in wet steel turning and thus fostering the wear of the tool. The performed analysis allowed to deduce that the intensified tool wear (in SSV cutting) is mainly due to thermo-mechanical fatigue

    Energy Efficiency of the Vulcanization Process of a Bicycle Tyre

    Get PDF
    The production of tyres is one of the most energy consuming manufacturing activities in the rubber sector. In the production cycle of a tyre, the curing operation has the maximum energy loss. This is mostly due to the extensive use of steam as a source of heat and pressure in the vulcanization process. To the author’s knowledge, no scientific work is available in the literature where the energy efficiency of a tyre vulcanization press is estimated by means of a comprehensive model of all main components, including the moulds, the press with its heated plates, the bladder and, of course, the tyre. The present work aims at filling this gap. First, the press used for developing the model is described, along with its components and its typical product, a bicycle tyre. The instruments used for measuring flow rates, temperatures and pressures are also listed. Then, a numerical model is presented, that predicts the energy transfers occurring in the vulcanization press during a full process cycle. The numerical model, developed with the software Simcenter Amesim 2021.1, has been validated by means of measurements taken at the press. The results indicate that the amount of energy which is actually consumed by the tyre for its reticulation process amounts to less than 1% of the total energy expenditure. The paper demonstrates that the tyre industry is in urgent need of an electrification conversion of the traditional steam-based processes

    Emerging therapies in pheochromocytoma and paraganglioma: Immune checkpoint inhibitors in the starting blocks

    Get PDF
    Pheochromocytoma and paraganglioma are neuroendocrine neoplasms, originating in the adrenal medulla and in parasympathetic and sympathetic autonomic nervous system ganglia, respec-tively. They usually present as localized tumours curable with surgery. However, these tumours may exhibit heterogeneous clinical course, ranging from no/minimal progression to aggressive (progres-sive/metastatic) behavior. For this setting of patients, current therapies are unsatisfactory. Immune checkpoint inhibitors have shown outstanding results for several types of solid cancers. We therefore aimed to summarize and discuss available data on efficacy and safety of current FDA-approved immune checkpoint inhibitors in patients with pheochromocytoma and paraganglioma. After an extensive search, we found 15 useful data sources (four full-published articles, four supplements of scientific journals, seven ongoing registered clinical trials). The data we detected, even with the limit of the small number of patients treated, make a great expectation on the therapeutic use of immune checkpoint inhibitors. Besides, the newly detected predictors of response will (hopefully) be of great helps in selecting the subset of patients that might benefit the most from this class of drugs. Finally, new trials are in the starting blocks, and they are expected to shed in the next future new light on a therapy, which is considered a milestone in oncology

    ZMIZ1 Preferably Enhances the Transcriptional Activity of Androgen Receptor with Short Polyglutamine Tract

    Get PDF
    The androgen receptor (AR) is a ligand-induced transcription factor and contains the polyglutamine (polyQ) tracts within its N-terminal transactivation domain. The length of polyQ tracts has been suggested to alter AR transcriptional activity in prostate cancer along with other endocrine and neurologic disorders. Here, we assessed the role of ZMIZ1, an AR co-activator, in regulating the activity of the AR with different lengths of polyQ tracts as ARQ9, ARQ24, and ARQ35 in prostate cancer cells. ZMIZ1, but not ZMIZ2 or ARA70, preferably augments ARQ9 induced androgen-dependent transcription on three different androgen-inducible promoter/reporter vectors. A strong protein-protein interaction between ZMIZ1 and ARQ9 proteins was shown by immunoprecipitation assays. In the presence of ZMIZ1, the N and C-terminal interaction of the ARQ9 was more pronounced than ARQ24 and ARQ35. Both Brg1 and BAF57, the components of SWI/SNF complexes, were shown to be involved in the enhancement of ZMIZ1 on AR activity. Using the chromatin immunoprecipitation assays (ChIP), we further demonstrated a strong recruitment of ZMIZ1 by ARQ9 on the promoter of the prostate specific antigen (PSA) gene. These results demonstrate a novel regulatory role of ZMIZ1 in modulating the polyQ tract length of AR in prostate cancer cells

    Eclipse in the Dark Years: Pick-up Flights, Routes of Resistance and the Free French

    Get PDF
    This article charts the importance of clandestine flights from Britain into occupied France during the Second World War as a route of resistance. These pick-up flights were coordinated from London and were an example of the inter-allied cooperation and Franco-British negotiation that took place between the BCRA, SIS, and SOE. The flights allowed General Charles de Gaulle to hold court with the leaders of resistance networks, smoothing problems on the route to a unified resistance council. Likewise, they allowed him to build bridges between vying factions in France and in London, drawing together the movements under his command and personalising the narrative of resistance. From busy London restaurants and family homes via secret flights to darkened fields in Occupied France, the route of these transfers shaped the character of resistance. This article draws out the personal interactions and connections that underpinned these networks and describes the enduring connections of this route of resistance, starting with the commemoration of Jean Moulin's crash landing at RAF Tangmere, the forward station for many of these flights
    corecore