2,516 research outputs found

    Neutron diffraction, magnetization and ESR studies of pseudocubic Nd(0.75)Ba(0.25)MnO3 and its unusual critical behavior above Tc

    Full text link
    Results of structural neutron diffraction study, magnetization and ESR measure-ments are presented for insulating Nd0.75Ba0.25MnO3, Tc = 129 K. The crystal structure is refined in the range 4.2-300 K. The compound is found to exhibit the Jahn-Teller (JT) transition at 250 K. The field cooled (FC) magnetization data are in a reasonable agreement with the predictions for a 3D isotropic ferromagnet above Tc. However, these measurements reveal a difference between the FC and zero FC data in the paramagnetic region. ESR results are also in a correspondence with behavior of a cubic ferromagnet above T* = 143 K. It is shown that an anisotropic exchange coupling of the Mn and Nd magnetic moments can give a substantial contribution in ESR linewidth masking its critical enhan-cement. The different temperature treatments of the sample reveal a temperature hysteresis of the ESR spectra below T* indicating an anomalous response in the paramagnetic region. The study of phase transition in this manganite suggests change in its character from the second to first order at T*. The conventional free energy including the magnetization and magnetic field is not found to describe the first order transition. This suggests that the charge, orbital and JT phonon degrees of freedom, in addition to magnetization, may be the critical variables, the unusual character of the transition being determined by their coupling. Unconventional critical behavior is attributed to orbital liquid metallic phase that coexists with the initial orbital ordered phase below T*.Comment: 18 pages, 5 figures, submitted to Phys. Rev.

    The Ages and Abundances of the M87 Globular Clusters

    Get PDF
    A subset of 150 globular clusters in M87 has been selected on the basis of S/N ratio for abundance and age determinations from the sample of Paper I. Indices measuring the strength of the strongest spectral features were determined for the M87 GCs and from new data for twelve galactic GCs. Combining the new and existing data for the galactic GCs and comparing the (UR)(U-R) colors and the line indices gives qualitative indications for the ages and abundances of the GCs. Quantitative results are obtained by applying the Worthey (1994) models for the integrated light of stellar systems of a single age, calibrated by observations of galactic GCs, to deduce abundances and ages for the objects in our sample. We find that the M87 GCs span a wide range in metallicity, from very metal poor to somewhat above solar metallicity. The mean [Fe/H] of -0.95 dex is higher than that of the galactic GC system, and there is a metal rich tail that reaches to higher [Fe/H] than one finds among the galactic GCs. The mean metallicity of the M87 GC system is about a factor of four lower than that of the M87 stellar halo at a fixed projected radius RR. The metallicity inferred from the X-ray studies is similar to that of the M87 stellar halo, not to that of GCs. We infer the relative abundances of Na, Mg, and Fe in the M87 GCs from the strength of their spectral features. The behavior of these elements between the metal rich and metal poor M87 GCs is similar to that shown by the galactic GCs and by halo stars in the Galaxy. The pattern of chemical evolution in these disparate old stellar systems is indistinguishable. We obtain a median age for the M87 GC system of 13 Gyr, similar to that of the galactic GCs, with a small dispersion about this value.Comment: 56 pages with included postscript figures; added derived M87 GC metallicities to Table 2, a statistical analysis of possible bimodality, an appendix on the metallicity calibration of U-R and the Washington system, and other smaller changes. Accepted for publication in ApJ. (See paper for complete version of the Abstract.

    Rate-equation approach for a charge qudit

    Full text link
    We theoretically describe the two-electron four-level double quantum dot (DQD) tunnel-coupled to a fermionic sea by using the rate-equation formalism. This approach allows to find occupation probabilities of each DQD level in a relatively simple way, compared to other methods. Calculated dependencies were compared with the experimental results. The system under study is irradiated by a strong driving signal and as a result one can observe Landau-Zener-Stuckelberg-Majorana (LZSM) interferometry patterns which are successfully described by the considered formalism. The system operation regime depends on the amplitude of the excitation signal and the energy detuning, so one can transfer the system to the necessary quantum state in the most efficient way by setting these parameters. Obtained results give useful insights about initializing, characterizing and controlling the system quantum states

    Conservation laws for multidimensional systems and related linear algebra problems

    Get PDF
    We consider multidimensional systems of PDEs of generalized evolution form with t-derivatives of arbitrary order on the left-hand side and with the right-hand side dependent on lower order t-derivatives and arbitrary space derivatives. For such systems we find an explicit necessary condition for existence of higher conservation laws in terms of the system's symbol. For systems that violate this condition we give an effective upper bound on the order of conservation laws. Using this result, we completely describe conservation laws for viscous transonic equations, for the Brusselator model, and the Belousov-Zhabotinskii system. To achieve this, we solve over an arbitrary field the matrix equations SA=A^tS and SA=-A^tS for a quadratic matrix A and its transpose A^t, which may be of independent interest.Comment: 12 pages; proof of Theorem 1 clarified; misprints correcte
    corecore