1,920 research outputs found

    Focused Crossed Andreev Reflection

    Full text link
    We consider non-local transport in a system with one superconducting and two normal metal terminals. Electron focusing by weak perpendicular magnetic fields is shown to tune the ratio between crossed Andreev reflection (CAR) and electron transfer (ET) in the non-local current response. Additionally, electron focusing facilitates non-local signals between normal metal contacts where the separation is as large as the mean free path rather than being limited by the coherence length of the superconductor. CAR and ET can be selectively enhanced by modulating the magnetic field

    Spin injection and relaxation in a mesoscopic superconductor

    Full text link
    We study spin accumulation and spin relaxation in a superconducting nanowire. Spins are injected and detected by using a set of magnetic tunnel contact electrodes, closely spaced along the nanowire. We observe a giant enhancement of the spin accumulation of up to five orders of magnitude on transition into the superconducting state, consistent with the expected changes in the density of states. The spin relaxation length decreases by an order of magnitude from its value in the normal state. These measurements combined with our theoretical model, allow us to distinguish the individual spin flip mechanisms present in the transport channel. Our conclusion is that magnetic impurities rather than spin-orbit coupling dominate spin-flip scattering in the superconducting state.Comment: 5 pages, 5 figure

    Effective interactions and large-scale diagonalization for quantum dots

    Full text link
    The widely used large-scale diagonalization method using harmonic oscillator basis functions (an instance of the Rayleigh-Ritz method, also called a spectral method, configuration-interaction method, or ``exact diagonalization'' method) is systematically analyzed using results for the convergence of Hermite function series. We apply this theory to a Hamiltonian for a one-dimensional model of a quantum dot. The method is shown to converge slowly, and the non-smooth character of the interaction potential is identified as the main problem with the chosen basis, while on the other hand its important advantages are pointed out. An effective interaction obtained by a similarity transformation is proposed for improving the convergence of the diagonalization scheme, and numerical experiments are performed to demonstrate the improvement. Generalizations to more particles and dimensions are discussed.Comment: 7 figures, submitted to Physical Review B Single reference error fixe

    Proximity effect-assisted absorption of spin currents in superconductors

    Full text link
    The injection of pure spin current into superconductors by the dynamics of a ferromagnetic contact is studied theoretically. Taking into account suppression of the order parameter at the interfaces (inverse proximity effect) and the energy-dependence of spin-flip scattering, we determine the temperature-dependent ferromagnetic resonance linewidth broadening. Our results agree with recent experiments in Nb|permalloy bilayers [C. Bell et al., arXiv:cond-mat/0702461].Comment: 4 page

    Circuit theory for crossed Andreev reflection and nonlocal conductance

    Full text link
    Nonlocal currents, in devices where two normal metal terminals are contacted to a superconductor, are determined using the circuit theory of mesoscopic superconductivity. We calculate the conductance associated with crossed Andreev reflection and electron transfer between the two normal metal terminals, in addition to the conductance from direct Andreev reflection and quasiparticle tunneling. Dephasing and proximity effect are taken into account.Comment: Included in special issue Spin Physics of Superconducting heterostructures of Applied Physics A: Materials Science & Processin

    Evolutionary patterns of proteinase activity in attine ant fungus gardens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Attine ants live in symbiosis with a basidiomycetous fungus that they rear on a substrate of plant material. This indirect herbivory implies that the symbiosis is likely to be nitrogen deprived, so that specific mechanisms may have evolved to enhance protein availability. We therefore hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved.</p> <p>Results</p> <p>We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing eight genera. We mapped these activity profiles on an independently obtained molecular phylogeny of the symbionts and show that total proteinase activity in lower attine symbionts peaks at ca. pH 6. The higher attine symbionts that have no known free-living relatives had much higher proteinase activities than the lower attine symbionts. Their total <it>in vitro </it>proteinase activity peaked at pH values around 5, which is close to the pH that the ants maintain in their fungus gardens, suggesting that the pH optimum of fungal proteinases may have changed after the irreversible domestication of evolutionary more derived fungal symbionts. This notion is also supported by buffering capacities of fungus gardens at pH 5.2 being remarkably high, and suggests that the fungal symbiont actively helps to maintain garden acidity at this specific level. Metalloproteinases dominated the activity profiles of lower attine gardens and may thus represent the ancestral type of proteinase production, whereas serine proteinase activity dominated the activity profiles of the higher attine gardens reared by <it>Trachymyrmex </it>and <it>Sericomyrmex</it>, suggesting that there may be trade-offs in the production of these enzyme classes. Remarkably, the single symbiont that is shared by species of the crown group of <it>Atta </it>and <it>Acromyrmex </it>leaf-cutting ants mostly showed metalloproteinase activity, suggesting that recurrent changes in enzyme production may have occurred throughout the domestication history of fungus-garden symbionts.</p> <p>Conclusions</p> <p>Proteinase pH optima and buffering capacities of fungal symbionts appear to have evolved remarkable adaptations to living in obligate symbiosis with farming ants. Although the functional roles of serine and metalloproteinases in fungus gardens are unknown, the differential production of these classes of proteolytic enzymes suggest that substrate specificity may be important and that trade-offs may prevent the simultaneous upregulation of both classes of enzymes.</p

    Monetary Policy, Regulation and Volatile Markets

    Get PDF
    Turmoil in financial markets causes reflection. Is monetary policy conducted in the most efficient way? Are regulatory and supervisory arrangements adequate when market volatility increases and financial institutions come under stress? In the present SUERF Study, we have collected the reflections by an outstanding group of top officials, researchers and observers. The editors are proud to be able to present their joint insights to SUERF readers. The papers were presented at the 27th SUERF Colloquium in Munich in June 2008: New trends in asset management: Exploring the implications.Financial markets, volatility, regulatory and supervisory arrangements, LATW, bubbles, monetary policy, asset prices, interest rate policy, LTCM, Basel II, MiFID, subprime, CDOs
    corecore