568 research outputs found

    Misuse of Novel Synthetic Opioids: A Deadly New Trend

    Get PDF
    Novel synthetic opioids (NSOs) include various analogs of fentanyl and newly emerging non-fentanyl compounds. Together with illicitly manufactured fentanyl (IMF), these drugs have caused a recent spike in overdose deaths, whereas deaths from prescription opioids have stabilized. NSOs are used as stand-alone products, as adulterants in heroin, or as constituents of counterfeit prescription medications. During 2015 alone, there were 9580 deaths from synthetic opioids other than methadone. Most of these fatalities were associated with IMF rather than diverted pharmaceutical fentanyl. In opioid overdose cases, where the presence of fentanyl analogs was examined, analogs were implicated in 17% of fatalities. Recent data from law enforcement sources show increasing confiscation of acetylfentanyl, butyrylfentanyl, and furanylfentanyl, in addition to non-fentanyl compounds such as U-47700. Since 2013, deaths from NSOs in the United States were 52 for acetylfentanyl, 40 for butyrylfentanyl, 128 for furanylfentanyl, and 46 for U-47700. All of these substances induce a classic opioid toxidrome, which can be reversed with the competitive antagonist naloxone. However, due to the putative high potency of NSOs and their growing prevalence, it is recommended to forgo the 0.4 mg initial dose of naloxone and start with 2 mg. Because NSOs offer enormous profit potential, and there is strong demand for their use, these drugs are being trafficked by organized crime. NSOs present major challenges for medical professionals, law enforcement agencies, and policymakers. Resources must be distributed equitably to enhance harm reduction though public education, medication-assisted therapies, and improved access to naloxone

    Evidence of Andreev bound states as a hallmark of the FFLO phase in κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2

    Full text link
    Superconductivity is a quantum phenomena arising, in its simplest form, from pairing of fermions with opposite spin into a state with zero net momentum. Whether superconductivity can occur in fermionic systems with unequal number of two species distinguished by spin, atomic hyperfine states, flavor, presents an important open question in condensed matter, cold atoms, and quantum chromodynamics, physics. In the former case the imbalance between spin-up and spin-down electrons forming the Cooper pairs is indyced by the magnetic field. Nearly fifty years ago Fulde, Ferrell, Larkin and Ovchinnikov (FFLO) proposed that such imbalanced system can lead to exotic superconductivity in which pairs acquire finite momentum. The finite pair momentum leads to spatially inhomogeneous state consisting of of a periodic alternation of "normal" and "superconducting" regions. Here, we report nuclear magnetic resonance (NMR) measurements providing microscopic evidence for the existence of this new superconducting state through the observation of spin-polarized quasiparticles forming so-called Andreev bound states.Comment: 6 pages, 5 fig

    Superconductivity in a layered cobalt oxyhydrate Na0.31_{0.31}CoO2_{2}\cdot1.3H2_{2}O

    Full text link
    We report the electrical, magnetic and thermal measurements on a layered cobalt oxyhydrate Na0.31_{0.31}CoO2_{2}\cdot1.3H2_{2}O. Bulk superconductivity at 4.3 K has been confirmed, however, the measured superconducting fraction is relatively low probably due to the sample's intrinsic two-dimensional characteristic. The compound exhibits weak-coupled and extreme type-II superconductivity with the average energy gap Δa(0)\Delta_{a}(0) and the Ginzburg-Landau parameter κ\kappa of \sim 0.50 meV and \sim 140, respectively. The normalized electronic specific heat data in the superconducting state well fit the T3T^{3} dependence, suggesting point nodes for the superconducting gap structure.Comment: 4 pages, 3 figure

    Impurity Effect on the In-plane Penetration Depth of the Organic Superconductors κ\kappa-(BEDT-TTF)2X_2X (XX = Cu(NCS)2_2 and Cu[N(CN)2_2]Br)

    Full text link
    We report the in-plane penetration depth λ\lambda_{\parallel} of single crystals κ\kappa-(BEDT-TTF)2X_2X (X=X= Cu(NCS)2_2 and Cu[N(CN)2_2]Br) by means of the reversible magnetization measurements under the control of cooling-rate. In XX = Cu(NCS)2_2, λ(0)\lambda_{\parallel}(0) as an extrapolation toward TT = 0 K does not change by the cooling-rate within the experimental accuracy, while TcT_{\textrm{c}} is slightly reduced. On the other hand, in XX = Cu[N(CN)2_2]Br, λ(0)\lambda_{\parallel}(0) indicates a distinct increase by cooling faster. The different behavior of λ(0)\lambda_{\parallel}(0) on cooling-rate between the two salts is quantitatively explained in terms of the local-clean approximation (London model), considering that the former salt belongs to the very clean system and the later the moderate clean one. The good agreement with this model demonstrates that disorders of ethylene-group in BEDT-TTF introduced by cooling faster increase the electron(quasiparticle)-scattering, resulting in shorter mean free path.Comment: 8 pages, 9 figure

    Block Copolymer at Nano-Patterned Surfaces

    Full text link
    We present numerical calculations of lamellar phases of block copolymers at patterned surfaces. We model symmetric di-block copolymer films forming lamellar phases and the effect of geometrical and chemical surface patterning on the alignment and orientation of lamellar phases. The calculations are done within self-consistent field theory (SCFT), where the semi-implicit relaxation scheme is used to solve the diffusion equation. Two specific set-ups, motivated by recent experiments, are investigated. In the first, the film is placed on top of a surface imprinted with long chemical stripes. The stripes interact more favorably with one of the two blocks and induce a perpendicular orientation in a large range of system parameters. However, the system is found to be sensitive to its initial conditions, and sometimes gets trapped into a metastable mixed state composed of domains in parallel and perpendicular orientations. In a second set-up, we study the film structure and orientation when it is pressed against a hard grooved mold. The mold surface prefers one of the two components and this set-up is found to be superior for inducing a perfect perpendicular lamellar orientation for a wide range of system parameters

    Comparison of coherent and weakly incoherent transport models for the interlayer magnetoresistance of layered Fermi liquids

    Get PDF
    The interlayer magnetoresistance of layered metals in a tilted magnetic field is calculated for two distinct models for the interlayer transport. The first model involves coherent interlayer transport and makes use of results of semi-classical or Bloch-Boltzmann transport theory. The second model involves weakly incoherent interlayer transport where the electron is scattered many times within a layer before tunneling into the next layer. The results are relevant to the interpretation of experiments on angular-dependent magnetoresistance oscillations (AMRO) in quasi-one- and quasi-two-dimensional metals. We find that the dependence of the magnetoresistance on the direction of the magnetic field is identical for both models except when the field is almost parallel to the layers. An important implication of this result is that a three-dimensional Fermi surface is not necessary for the observation of the Yamaji and Danner oscillations seen in quasi-two- and quasi-one-dimensional metals, respectively. A universal expression is given for the dependence of the resistance at AMRO maxima and minima on the magnetic field and scattering time (and thus the temperature). We point out three distinctive features of coherent interlayer transport: (i) a beat frequency in the magnetic oscillations of quasi-two-dimensional systems, (ii) a peak in the angular-dependent magnetoresistance when the field is sufficiently large and parallel to the layers, and (iii) a crossover from a linear to a quadratic field dependence for the magnetoresistance when the field is parallel to the layers. Properties (i) and (ii) are compared with published experimental data for a range of quasi-two-dimensional organic metals and for Sr2RuO4.Comment: 21 pages, RevTeX + epsf, 4 figures. Published version. Subsection added. References update

    Self-Assembly of Supramolecular Triblock Copolymer Complexes

    Get PDF
    Four different poly(tert-butoxystyrene)-b-polystyrene-b-poly(4-vinylpyridine) (PtBOS-b-PS-b-P4VP) linear triblock copolymers, with the P4VP weight fraction varying from 0.08 to 0.39, were synthesized via sequential anionic polymerization. The values of the unknown interaction parameters between styrene and tert-butoxystyrene and between tert-butoxystyrene and 4-vinylpyridine were determined from random copolymer blend miscibility studies and found to satisfy 0.031<χS,tBOS<0.034 and 0.39<χ4VP,tBOS<0.43, the latter being slightly larger than the known 0.30<χS,4VP≤0.35 value range. All triblock copolymers synthesized adopted a P4VP/PS core/shell cylindrical self-assembled morphology. From these four triblock copolymers supramolecular complexes were prepared by hydrogen bonding a stoichiometric amount of pentadecylphenol (PDP) to the P4VP blocks. Three of these complexes formed a triple lamellar ordered state with additional short length scale ordering inside the P4VP(PDP) layers. The self-assembled state of the supramolecular complex based on the triblock copolymer with the largest fraction of P4VP consisted of alternating layers of PtBOS and P4VP(PDP) layers with PS cylinders inside the latter layers. The difference in morphology between the triblock copolymers and the supramolecular complexes is due to two effects: (i) a change in effective composition and, (ii) a reduction in interfacial tension between the PS and P4VP containing domains. The small angle X-ray scattering patterns of the supramolecules systems are very temperature sensitive. A striking feature is the disappearance of the first order scattering peak of the triple lamellar state in certain temperature intervals, while the higher order peaks (including the third order) remain. This is argued to be due to the thermal sensitivity of the hydrogen bonding and thus directly related to the very nature of these systems.
    corecore