46 research outputs found

    Comparison of non-crossing perturbative approach and generalized projection method for strongly coupled spin-fermion systems at low doping

    Full text link
    We analyze the two-dimensional spin-fermion model in the strong coupling regime relevant to underdoped cuprates. We recall the set of general sumrules that relate moments of spectral density and the imaginary part of fermion self-energy with static correlation functions. We show that two-pole approximation of projection method satisfies the sumrules for first four moments of spectral density and gives an exact upper bound for quasiparticle energy near the band bottom. We prove that non-crossing approximation that is often made in perturbative consideration of the model violates the sumrule for third moment of spectral density. This leads to wrong position of lowest quasiparticle band. On the other hand, the projection method is inadequate in weak coupling limit because of approximate treatment of kinetic energy term. We propose a generalization of projection method that overcomes this default and give the fermion self-energy that correctly behaves both in weak and strong coupling limits.Comment: 9 pages, 4 EPS figures, RevTe

    ACCURATE ESTIMATION OF ORIENTATION PARAMETERS OF UAV IMAGES THROUGH IMAGE REGISTRATION WITH AERIAL OBLIQUE IMAGERY

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have gained popularity in acquiring geotagged, low cost and high resolution images. However, the images acquired by UAV-borne cameras often have poor georeferencing information, because of the low quality on-board Global Navigation Satellite System (GNSS) receiver. In addition, lightweight UAVs have a limited payload capacity to host a high quality on-board Inertial Measurement Unit (IMU). Thus, orientation parameters of images acquired by UAV-borne cameras may not be very accurate. Poorly georeferenced UAV images can be correctly oriented using accurately oriented airborne images capturing a similar scene by finding correspondences between the images. This is not a trivial task considering the image pairs have huge variations in scale, perspective and illumination conditions. This paper presents a procedure to successfully register UAV and aerial oblique imagery. The proposed procedure implements the use of the AKAZE interest operator for feature extraction in both images. Brute force is implemented to find putative correspondences and later on Lowe’s ratio test (Lowe, 2004) is used to discard a significant number of wrong matches. In order to filter out the remaining mismatches, the putative correspondences are used in the computation of multiple homographies, which aid in the reduction of outliers significantly. In order to increase the number and improve the quality of correspondences, the impact of pre-processing the images using the Wallis filter (Wallis, 1974) is investigated. This paper presents the test results of different scenarios and the respective accuracies compared to a manual registration of the finally computed fundamental and essential matrices that encode the orientation parameters of the UAV images with respect to the aerial images

    Team-level programming of drone sensor networks

    Get PDF
    Autonomous drones are a powerful new breed of mobile sensing platform that can greatly extend the capabilities of traditional sensing systems. Unfortunately, it is still non-trivial to coordinate multiple drones to perform a task collaboratively. We present a novel programming model called team-level programming that can express collaborative sensing tasks without exposing the complexity of managing multiple drones, such as concurrent programming, parallel execution, scaling, and failure recovering. We create the Voltron programming system to explore the concept of team-level programming in active sensing applications. Voltron offers programming constructs to create the illusion of a simple sequential execution model while still maximizing opportunities to dynamically re-task the drones as needed. We implement Voltron by targeting a popular aerial drone platform, and evaluate the resulting system using a combination of real deployments, user studies, and emulation. Our results indicate that Voltron enables simpler code and produces marginal overhead in terms of CPU, memory, and network utilization. In addition, it greatly facilitates implementing correct and complete collaborative drone applications, compared to existing drone programming systems

    PHOTOMATCH: AN OPEN-SOURCE MULTI-VIEW and MULTI-MODAL FEATURE MATCHING TOOL for PHOTOGRAMMETRIC APPLICATIONS

    Get PDF
    Automatic feature matching is a crucial step in Structure-from-Motion (SfM) applications for 3D reconstruction purposes. From an historical perspective we can say now that SIFT was the enabling technology that made SfM a successful and fully automated pipeline. SIFT was the ancestor of a wealth of detector/descriptor methods that are now available. Various research activities have tried to benchmark detector/descriptors operators, but a clear outcome is difficult to be drawn. This paper presents an ISPRS Scientific Initiative aimed at providing the community with an educational open-source tool (called PhotoMatch) for tie point extractions and image matching. Several enhancement and decolorization methods can be initially applied to an image dataset in order to improve the successive feature extraction steps. Then different detector/descriptor combinations are possible, coupled with different matching strategies and quality control metrics. Examples and results show the implemented functionality of PhotoMatch which has also a tutorial for shortly explaining the implemented methods

    Orientation of oblique airborne image sets - Experiences from the ISPRS/Eurosdr benchmark on multi-platform photogrammetry

    Get PDF
    During the last decade the use of airborne multi camera systems increased significantly. The development in digital camera technology allows mounting several mid- or small-format cameras efficiently onto one platform and thus enables image capture under different angles. Those oblique images turn out to be interesting for a number of applications since lateral parts of elevated objects, like buildings or trees, are visible. However, occlusion or illumination differences might challenge image processing. From an image orientation point of view those multi-camera systems bring the advantage of a better ray intersection geometry compared to nadir-only image blocks. On the other hand, varying scale, occlusion and atmospheric influences which are difficult to model impose problems to the image matching and bundle adjustment tasks. In order to understand current limitations of image orientation approaches and the influence of different parameters such as image overlap or GCP distribution, a commonly available dataset was released. The originally captured data comprises of a state-of-the-art image block with very high overlap, but in the first stage of the so-called ISPRS/EUROSDR benchmark on multi-platform photogrammetry only a reduced set of images was released. In this paper some first results obtained with this dataset are presented. They refer to different aspects like tie point matching across the viewing directions, influence of the oblique images onto the bundle adjustment, the role of image overlap and GCP distribution. As far as the tie point matching is concerned we observed that matching of overlapping images pointing to the same cardinal direction, or between nadir and oblique views in general is quite successful. Due to the quite different perspective between images of different viewing directions the standard tie point matching, for instance based on interest points does not work well. How to address occlusion and ambiguities due to different views onto objects is clearly a non-solved research problem so far. In our experiments we also confirm that the obtainable height accuracy is better when all images are used in bundle block adjustment. This was also shown in other research before and is confirmed here. Not surprisingly, the large overlap of 80/80% provides much better object space accuracy – random errors seem to be about 2-3fold smaller compared to the 60/60% overlap. A comparison of different software approaches shows that newly emerged commercial packages, initially intended to work with small frame image blocks, do perform very well

    Automated Co-Registration of Intra-Epoch and Inter-Epoch Series of Multispectral Uav Images for Crop Monitoring

    No full text
    The application of UAV-based aerial imagery has advanced exponentially in the past two decades. This can be attributed to UAV operational flexibility, ultra-high spatial resolution, inexpensiveness, and UAV-based sensors enhancement. Nonetheless, the application of multitemporal series of multispectral UAV imagery still suffers significant misregistration errors, and therefore becoming a concern for applications such as precision agriculture. Direct image georeferencing and co-registration is commonly done using ground control points; this is usually costly and time consuming. This research proposes a novel approach for automatic co-registration of multitemporal UAV imagery using intensity-based keypoints. The Speeded Up Robust Features (SURF), Binary Robust Invariant Scalable Keypoints (BRISK), Maximally Stable Extremal Regions (MSER) and KAZE algorithms, were tested and parameters optimized. Image matching performance of these algorithms informed the decision to pursue further experiments with only SURF and KAZE. Optimally parametrized SURF and KAZE algorithms obtained co-registration accuracies of 0.1 and 0.3 pixels for intra-epoch and inter-epoch images respectively. To obtain better intra-epoch co-registration accuracy, collective band processing is advised whereas one-to-one matching strategy is recommended for inter-epoch co-registration. The results were tested using a maize crop monitoring case and the; comparison of spectral response of vegetation between the UAV sensors, Parrot Sequoia and Micro MCA was performed. Due to the missing incidence sensor, spectral and radiometric calibration of Micro MCA imagery is observed to be key in achieving optimal response. Also, the cameras have different specifications and thus differ in the quality of their respective photogrammetric outputs
    corecore