9 research outputs found

    Electromagnetic cascade masquerade: a way to mimic γ\gamma--axion-like particle mixing effects in blazar spectra

    Full text link
    Context. Most of the studies on extragalactic {\gamma}-ray propagation performed up to now only accounted for primary gamma-ray absorption and adiabatic losses ("absorption-only model"). However, there is growing evidence that this model is oversimplified and must be modified in some way. In particular, it was found that the intensity extrapolated from the optically-thin energy range of some blazar spectra is insufficient to explain the optically-thick part of these spectra. This effect was interpreted as an indication for {\gamma}-axion-like particle (ALP) oscillation. On the other hand, there are many hints that a secondary component from electromagnetic cascades initiated by primary {\gamma}-rays or nuclei may be observed in the spectra of some blazars. Aims. We study the impact of electromagnetic cascades from primary {\gamma}-rays or protons on the physical interpretation of blazar spectra obtained with imaging Cherenkov telescopes. Methods. We use the publicly-available code ELMAG to compute observable spectra of electromagnetic cascades from primary {\gamma}-rays. For the case of primary proton, we develop a simple, fast and reasonably accurate hybrid method to calculate the observable spectrum. We perform the fitting of the observed spectral energy distributions (SEDs) with various physical models: the absorption-only model, the "electromagnetic cascade model" (for the case of primary {\gamma}-rays), and several versions of the hadronic cascade model (for the case of primary proton). We distinguish the following species of hadronic cascade models: 1) "basic hadronic model", where it is assumed that the proton beam travels undisturbed by extragalactic magnetic field and that all observable {\gamma}-rays are produced by primary protons through photohadronic processes with subsequent development of electromagnetic cascades /abridgedComment: Accepted by A&A. 25 pages, 31 figures. Corrected fig. 5, fig. 7; new explanations for fig. 6--7; several typos fixed wrt v.

    Stress-strain state and loss of stability of anisotropic thermal coating under thermal shock

    Get PDF
    The deformation behavior of thermal barrier coatings has been investigated. The mechanism of occurring instabilities in such coatings based on their representation in the form of a plate located on an elastic foundation has been studied. Loss of stability manifests itself in the form of a doubly periodic system of intrusion and extrusion zones that is qualitatively consistent with the well-known experimental results. Typical features of stability loss and its dependence on the properties of conjugated materials have been investigated by the example of the thermal loading simulation of the copper specimen with a protective ceramic coating. The influence of the thermo-mechanical properties anisotropy of the coating material on the character of the emerging instability has been estimated
    corecore