150 research outputs found

    Pionic atoms probing pi-NN resonances

    Full text link
    The pion optical potential generated by the hypothetical pi-NN-coupled NN-decoupled dibaryon resonance d'(2065) is calculated to the lowest order in nuclear matter density. The contribution to the pion optical potential is found to be within the empirical errors, so the d'(2065) existence currently does not contradict to the observed properties of the pi-nucleus bound states. Future progress in the pionic X-ray spectroscopy can reveal contributions of pi-NN resonances to energy levels and widths of the pionic atoms.Comment: 3 pages REVTEX, 1 ps figur

    Microwave assisted heterogeneous catalysis: effects of varying oxygen concentrations on the oxidative coupling of methane

    No full text
    The oxidative coupling of methane was investigated over alumina supported La2O3/CeO2 catalysts under microwave dielectric heating conditions at different oxygen concentrations. It was observed that, at a given temperature using microwave heating, selectivities for both ethane and ethylene were notably higher when oxygen was absent than that in oxygen/methane mixtures. The differences were attributed to the localised heating of microwave radiation resulting in temperature inhomogeneity in the catalyst bed. A simplified model was used to estimate the temperature inhomogeneity; the temperature at the centre of the catalyst bed was 85 °C greater than that at the periphery when the catalyst was heated by microwaves in a gas mixture with an oxygen concentration of 12.5% (v/v), and the temperature difference was estimated to be 168 °C in the absence of oxygen

    In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules in mice

    Get PDF
    We describe a two-photon microscopy-based method to evaluate the in vivo systemic transport of compounds. This method comprises imaging of the intact liver, kidney and intestine, the main organs responsible for uptake and elimination of xenobiotics and endogenous molecules. The image quality of the acquired movies was sufficient to distinguish subcellular structures like organelles and vesicles. Quantification of the movement of fluorescent dextran and fluorescent cholic acid derivatives in different organs and their sub-compartments over time revealed significant dynamic differences. Calculated half-lives were similar in the capillaries of all investigated organs but differed in the specific sub-compartments, such as parenchymal cells and bile canaliculi of the liver, glomeruli, proximal and distal tubules of the kidney and lymph vessels (lacteals) of the small intestine. Moreover, tools to image immune cells, which can influence transport processes in inflamed tissues, are described. This powerful approach provides new possibilities for the analysis of compound transport in multiple organs and can support physiologically based pharmacokinetic modeling, in order to obtain more precise predictions at the whole body scale

    Spry1 Is Expressed in Hemangioblasts and Negatively Regulates Primitive Hematopoiesis and Endothelial Cell Function

    Get PDF
    Development of the hematopoietic and endothelial lineages derives from a common mesodermal precursor, the Flk1(+) hemangioblast. However, the signaling pathways that regulate the development of hematopoietic and endothelial cells from this common progenitor cell remains incompletely understood. Using mouse models with a conditional Spry1 transgene, and a Spry1 knockout mouse, we investigated the role of Spry1 in the development of the endothelial and hematopoietic lineages during development.Quantitative RT-PCR analysis demonstrates that Spry1, Spry2, and Spry4 are expressed in Flk1(+) hemangioblasts in vivo, and decline significantly in c-Kit(+) and CD41(+) hematopoietic progenitors, while expression is maintained in developing endothelial cells. Tie2-Cre-mediated over-expression of Spry1 results in embryonic lethality. At E9.5 Spry1;Tie2-Cre embryos show near normal endothelial cell development and vessel patterning but have reduced hematopoiesis. FACS analysis shows a reduction of primitive hematopoietic progenitors and erythroblastic cells in Spry1;Tie2-Cre embryos compared to controls. Colony forming assays confirm the hematopoietic defects in Spry1;Tie2-Cre transgenic embryos. Immunostaining shows a significant reduction of CD41 or CD71 and dpERK co-stained cells in Spry1;Tie2-Cre embryos compared to controls, whereas the number of VEC(+) and dpERK co-stained cells is comparable. Compared to controls, Spry1;Tie2-Cre embryos also show a decrease in proliferation and an increase in apoptosis. Furthermore, loss of Spry1 results in an increase of CD41(+) and CD71(+) cells at E9.5 compared with controls.These data indicate that primitive hematopoietic cells derive from Tie2-expressing hemangioblasts and that Spry1 over expression inhibits primitive hematopoietic progenitor and erythroblastic cell development and expansion while having no obvious effect on endothelial cell development

    Improved monitoring of clinical response in Systemic Lupus Erythematosus by longitudinal trend in soluble vascular cell adhesion molecule-1

    Get PDF
    This work was funded by Arthritis Research UK. MJL holds an Arthritis Research UK Clinician Scientist Fellowship (19631), and was previously supported by the St Thomas’ Lupus Trust. The study received support from the National Institute for Health Research (NIHR)-funded Flow Cytometry Core Facility and the Biomedical Research Centre based at Guy’s & St. Thomas’ National Health Service (NHS) Foundation Trust, in partnership with King’s College London

    Increased Abundance of M cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility

    Get PDF
    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain. To replicate within Peyer's patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer's patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer's patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases

    The study of women, infant feeding and type 2 diabetes after GDM pregnancy and growth of their offspring (SWIFT Offspring study): prospective design, methodology and baseline characteristics

    Get PDF
    Abstract Background Breastfeeding is associated with reduced risk of becoming overweight or obese later in life. Breastfed babies grow more slowly during infancy than formula-fed babies. Among offspring exposed in utero to maternal glucose intolerance, prospective data on growth during infancy have been unavailable. Thus, scientific evidence is insufficient to conclude that breastfeeding reduces the risk of obesity among the offspring of diabetic mothers (ODM). To address this gap, we devised the Study of Women, Infant Feeding and Type 2 Diabetes after GDM Pregnancy and Growth of their Offspring, also known as the SWIFT Offspring Study. This prospective, longitudinal study recruited mother-infant pairs from the SWIFT Study, a prospective study of women with recent gestational diabetes mellitus (GDM). The goal of the SWIFT Offspring Study is to determine whether breastfeeding intensity and duration, compared with formula feeding, are related to slower growth of GDM offspring during the first year life. This article details the study design, participant eligibility, data collection, and methodologies. We also describe the baseline characteristics of the GDM mother-infant pairs. Methods The study enrolled 466 mother-infant pairs among GDM deliveries in northern California from 2009–2011. Participants attended three in-person study exams at 6–9 weeks, 6 months and 12 months after delivery for infant anthropometry (head circumference, body weight, length, abdominal circumference and skinfold thicknesses), as well as maternal anthropometry (body weight, waist circumference and percent body fat). Mothers also completed questionnaires on health and lifestyle behaviors, including infant diet, sleep and temperament. Breastfeeding intensity and duration were assessed via several sources (diaries, telephone interviews, monthly mailings and in-person exams) from birth through the first year of life. Pregnancy course, clinical perinatal and newborn outcomes were obtained from health plan electronic medical records. Infant saliva samples were collected and stored for genetics studies. Discussion This large, racially and ethnically diverse cohort of GDM offspring will enable evaluation of the relationship of infant feeding to growth during infancy independent of perinatal characteristics, sociodemographics and other risk factors. The longitudinal design provides the first quantitative measures of breastfeeding intensity and duration among GDM offspring during early life

    Inflammation-induced formation of fat-associated lymphoid clusters

    Get PDF
    Fat-associated lymphoid clusters (FALCs) are a type of lymphoid tissue associated with visceral fat. Here we found that the distribution of FALCs was heterogeneous, with the pericardium containing large numbers of these clusters. FALCs contributed to the retention of B-1 cells in the peritoneal cavity through high expression of the chemokine CXCL13, and they supported B cell proliferation and germinal center differentiation during peritoneal immunological challenges. FALC formation was induced by inflammation, which triggered the recruitment of myeloid cells that expressed tumor-necrosis factor (TNF) necessary for signaling via the TNF receptors in stromal cells. Natural killer T cells (NKT cells) restricted by the antigen-presenting molecule CD1d were likewise required for the inducible formation of FALCs. Thus, FALCs supported and coordinated the activation of innate B cells and T cells during serosal immune responses
    • …
    corecore