240 research outputs found

    Magnon contribution to unidirectional spin Hall magnetoresistance

    Full text link
    We develop a model for the magnonic contribution to the unidirectional spin Hall magnetoresistance (USMR) of heavy metal/ferromagnetic insulator bilayer films. We show that diffusive transport of Holstein-Primakoff magnons leads to an accumulation of spin near the bilayer interface, giving rise to a magnoresistance which is not invariant under inversion of the current direction. Unlike the electronic contribution described by Zhang and Vignale [Phys. Rev. B 94, 140411 (2016)], which requires an electrically conductive ferromagnet, the magnonic contribution can occur in ferromagnetic insulators such as yttrium iron garnet. We show that the magnonic USMR is, to leading order, cubic in the spin Hall angle of the heavy metal, as opposed to the linear relation found for the electronic contribution. We estimate that the maximal magnonic USMR in Pt|YIG bilayers is on the order of 10−810^{-8}, but may reach values of up to 10−510^{-5} if the magnon gap is suppressed, and can thus become comparable to the electronic contribution in, e.g., Pt|Co. We show that the magnonic USMR at a finite magnon gap may be enhanced by an order of magnitude if the magnon diffusion length is decreased to a specific optimal value that depends on various system parameters.Comment: 9 pages, 7 figure

    Creep of current-driven domain-wall lines: intrinsic versus extrinsic pinning

    Full text link
    We present a model for current-driven motion of a magnetic domain-wall line, in which the dynamics of the domain wall is equivalent to that of an overdamped vortex line in an anisotropic pinning potential. This potential has both extrinsic contributions due to, e.g., sample inhomogeneities, and an intrinsic contribution due to magnetic anisotropy. We obtain results for the domain-wall velocity as a function of current for various regimes of pinning. In particular, we find that the exponent characterizing the creep regime depends strongly on the presence of a dissipative spin transfer torque. We discuss our results in the light of recent experiments on current-driven domain-wall creep in ferromagnetic semiconductors, and suggest further experiments to corroborate our model.Comment: For figure in GIF format, see http://www.phys.uu.nl/~duine/mapping.gif v2: (hopefully) visible EPS figure added. v2: expanded new versio

    Magnons versus electrons in thermal spin transport through metallic interfaces

    Full text link
    We develop a theory for spin transport in magnetic metals that treats the contribution of magnons and electrons on equal footing. As an application we consider thermally-driven spin injection across an interface between a magnetic metal and a normal metal, i.e., the spin-dependent Seebeck effect. We show that the ratio between magnonic and electronic contribution scales as T/TCTF/TC\sqrt{T/T_C}T_F/T_C, with the Fermi temperature TFT_F and the Curie temperature TCT_C. Since, typically, TC≪TFT_C \ll T_F, the magnonic contribution may dominate the thermal spin injection, even though the interface is more transparent for electronic spin current.Comment: Contribution to the Special issue on Spincaloritronics in Journal of Physics D: Applied Physic

    Interaction effects on dynamic correlations in non-condensed Bose gases

    Full text link
    We consider dynamic, i.e., frequency-dependent, correlations in non-condensed ultracold atomic Bose gases. In particular, we consider the single-particle correlation function and its power spectrum. We compute this power spectrum for a one-component Bose gas, and show how it depends on the interatomic interactions that lead to a finite single-particle relaxation time. As another example, we consider the power spectrum of spin-current fluctuations for a two-component Bose gas and show how it is determined by the spin-transport relaxation time.Comment: 9 pages, 3 figure

    Current Induced Order Parameter Dynamics: Microscopic Theory Applied to Co/Cu/Co spin valves

    Full text link
    Transport currents can alter alter order parameter dynamics and change steady states in superconductors, in ferromagnets, and in hybrid systems. In this article we present a scheme for fully microscopic evaluation of order parameter dynamics that is intended for application to nanoscale systems. The approach relies on time-dependent mean-field-theory, on an adiabatic approximation, and on the use of non-equilibrium Greens function (NEGF) theory to calculate the influence of a bias voltage across a system on its steady-state density matrix. We apply this scheme to examine the spin-transfer torques which drive magnetization dynamics in Co/Cu/Co spin-valve structures. Our microscopic torques are peaked near Co/Cu interfaces, in agreement with most previous pictures, but suprisingly act mainly on Co transition metal dd-orbitals rather than on ss-orbitals as generally supposed.Comment: 9 pages, 5 figure

    Probing the topological exciton condensate via Coulomb drag

    Full text link
    The onset of exciton condensation in a topological insulator thin film was recently predicted. We calculate the critical temperature for this transition, taking into account screening effects. Furthermore, we show that the proximity to this transition can be probed by measuring the Coulomb drag resistivity between the surfaces of the thin film as a function of temperature. This resistivity shows an upturn upon approaching the exciton-condensed state.Comment: 4 pages, 3 figure

    Spin transport in a unitary Fermi gas close to the BCS transition

    Full text link
    We consider spin transport in a two-component ultracold Fermi gas with attractive interspecies interactions close to the BCS pairing transition. In particular, we consider the spin-transport relaxation rate and the spin-diffusion constant. Upon approaching the transition, the scattering amplitude is enhanced by pairing fluctuations. However, as the system approaches the transition, the spectral weight for excitations close to the Fermi level is decreased by the formation of a pseudogap. To study the consequence of these two competing effects, we determine the spin-transport relaxation rate and the spin-diffusion constant using both a Boltzmann approach and a diagrammatic approach. The former ignores pseudogap physics and finite lifetime effects. In the latter, we incorporate the full pseudogap physics and lifetime effects, but we ignore vertex corrections, so that we effectively calculate single-particle relaxation rates instead of transport relaxation rates. We find that there is qualitative agreement between these two approaches although the results for the transport coefficients differ quantitatively.Comment: 9 pages, 10 figure
    • …
    corecore