38,222 research outputs found
Red Giants in the Small Magellanic Cloud. II. Metallicity Gradient and Age-Metallicity Relation
We present results from the largest CaII triplet line metallicity study of
Small Magellanic Cloud (SMC) field red giant stars to date, involving 3037
objects spread across approximately 37.5 sq. deg., centred on this galaxy. We
find a median metallicity of [Fe/H]=-0.99+/-0.01, with clear evidence for an
abundance gradient of -0.075+/-0.011 dex / deg. over the inner 5 deg. We
interpret the abundance gradient to be the result of an increasing fraction of
young stars with decreasing galacto-centric radius, coupled with a uniform
global age-metallicity relation. We also demonstrate that the age-metallicity
relation for an intermediate age population located 10kpc in front of the NE of
the Cloud is indistinguishable from that of the main body of the galaxy,
supporting a prior conjecture that this is a stellar analogue of the Magellanic
Bridge. The metal poor and metal rich quartiles of our RGB star sample (with
complementary optical photometry from the Magellanic Clouds Photometric Survey)
are predominantly older and younger than approximately 6Gyr, respectively.
Consequently, we draw a link between a kinematical signature, tentatively
associated by us with a disk-like structure, and the upsurges in stellar
genesis imprinted on the star formation history of the central regions of the
SMC. We conclude that the increase in the star formation rate around 5-6Gyr ago
was most likely triggered by an interaction between the SMC and LMC.Comment: To appear in MNRA
Red Giants in the Small Magellanic Cloud. I. Disk and Tidal Stream Kinematics
We present results from an extensive spectroscopic survey of field stars in
the Small Magellanic Cloud (SMC). 3037 sources, predominantly first-ascent red
giants, spread across roughly 37.5 sq. deg, are analysed. The line of sight
velocity field is dominated by the projection of the orbital motion of the SMC
around the LMC/Milky Way. The residuals are inconsistent with both a
non-rotating spheroid and a nearly face on disk system. The current sample and
previous stellar and HI kinematics can be reconciled by rotating disk models
with line of nodes position angle, theta, ~ 120-130 deg., moderate inclination
(i ~ 25-70 deg.), and rotation curves rising at 20-40 km/s/kpc. The metal-poor
stars exhibit a lower velocity gradient and higher velocity dispersion than the
metal-rich stars. If our interpretation of the velocity patterns as bulk
rotation is appropriate, then some revision to simulations of the SMC orbit is
required since these are generally tuned to the SMC disk line-of-nodes lying in
a NE-SW direction. Residuals show strong spatial structure indicative of
non-circular motions that increase in importance with increasing distance from
the SMC centre. Kinematic substructure in the north-west part of our survey
area is associated with the tidal tail or Counter-Bridge predicted by
simulations. Lower line-of-sight velocities towards the Wing and the larger
velocities just beyond the SW end of the SMC Bar are probably associated with
stellar components of the Magellanic Bridge and Counter-Bridge, respectively.
Our results reinforce the notion that the intermediate-age stellar population
of the SMC is subject to substantial stripping by external forces.Comment: To appear in MNRA
Beyond capitalism and liberal democracy: on the relevance of GDH Cole’s sociological critique and alternative
This article argues for a return to the social thought of the often ignored early 20th-century English thinker GDH Cole. The authors contend that Cole combined a sociological critique of capitalism and liberal democracy with a well-developed alternative in his work on guild socialism bearing particular relevance to advanced capitalist societies. Both of these, with their focus on the limitations on ‘free communal service’ in associations and the inability of capitalism to yield emancipation in either production or consumption, are relevant to social theorists looking to understand, critique and contribute to the subversion of neoliberalism. Therefore, the authors suggest that Cole’s associational sociology, and the invitation it provides to think of formations beyond capitalism and liberal democracy, is a timely and valuable resource which should be returned to
Overview of SERI's high efficiency solar cell research
The bulk of the research efforts supported by the Solar Energy Research Institute (SERI) High Efficiency Concepts area has been directed towards establishing the feasibility of achieving very high efficiencies, 30% for concentrator and more than 20% for thin film flat plate, in solar cell designs which could possibly be produced competitively. The research has accomplished a great deal during the past two years. Even though the desired performance levels have not yet been demonstrated, based on the recent progress, a greater portion of the terrestrial photovoltaics community believes that these efficiencies are attainable. The program will now allocate a larger portion of resources to low cost, large area deposition technology. The program is currently shifting greater emphasis on to the study of crystal growth in order to provide the understanding and tools needed to design a large area process
The Orbital Structure of Dark Matter Halos with Gas
With the success of the Chandra and XMM missions and the maturation of
gravitational lensing techniques, powerful constraints on the orbital structure
of cluster dark matter halos are possible. I show that the X-ray emissivity and
mass of a galaxy cluster uniquely specify the anisotropy and velocity
dispersion profiles of its dark matter halo. I consider hydrostatic as well as
cooling flow scenarios, and apply the formalism to the lensing cluster
CL0024+16 and the cooling flow cluster Abell 2199. In both cases, the model
predicts a parameter-free velocity dispersion profile that is consistent with
independent optical redshift surveys of the clusters.Comment: 17 pages, 12 figures; to appear in the Astrophysical Journa
Is Strangeness Still Strange at the LHC?
Strangeness production is calculated in a pQCD-based model (including nuclear
effects) in the high transverse momentum sector, where pQCD is expected to work
well. We investigate pion, kaon, proton and lambda production in pp and
heavy-ion collisions. Parton energy loss in AA collisions is taken into
account. We compare strange-to-non-strange meson and baryon ratios to data at
RHIC, and make predictions for the LHC. We find that these ratios significantly
deviate from unity not only at RHIC but also at the LHC, indicating the special
role of strangeness at both energies.Comment: Contribution to SQM 2007, 6 pages 2 figure
- …