19 research outputs found

    Application of volumetric modulated arc therapy (VMAT) in a dual-vendor environment

    Get PDF
    Background and Purpose The purpose of this study was to assess plan quality and treatment time achievable with the new VMAT optimization tool implemented in the treatment planning system Oncentra MasterPlan® as compared to IMRT for Elekta SynergyS® linear accelerators. Materials and methods VMAT was implemented on a SynergyS® linear accelerator (Elekta Ltd., Crawley, UK) with Mosaiq® record and verify system (IMPAC Medical Systems, Sunnyvale, CA) and the treatment planning system Oncentra MasterPlan® (Nucletron BV, Veenendaal, the Netherlands). VMAT planning was conducted for three typical target types of prostate cancer, hypopharynx/larynx cancer and vertebral metastases, and compared to standard IMRT with respect to plan quality, number of monitor units (MU), and treatment time. Results For prostate cancer and vertebral metastases single arc VMAT led to similar plan quality as compared to IMRT. For treatment of the hypopharynx/larynx cancer, a second arc was necessary to achieve sufficient plan quality. Treatment time was reduced in all cases to 35% to 43% as compared to IMRT. Times required for optimization and dose calculation, however, increased by a factor of 5.0 to 6.8. Conclusion Similar or improved plan quality can be achieved with VMAT as compared to IMRT at reduced treatment times but increased calculation times

    First principles based proximity effect of superconductor–normal metal heterostructures

    No full text
    In this paper we study the proximity effect in superconductor-normal metal heterostructures based on first principles calculations with treating the pairing potential as an adjustable parameter. The superconducting order parameter (anomalous density) is obtained from the Green-function by solving the Kohn-Sham-Bogoliubov-de Gennes equations with the Screened Korringa-Kohn-Rostoker method. The results are interpreted for an Au/Nb(0 0 1) system. The layer resolved anomalous spectral function is also obtained which is closely related to the superconducting order parameter. We find that the anomalous spectral function has the fingerprint of the Andreev scattering process and it is connected to the electron-hole ratio of the quasiparticle states. We also show that the proximity effect can be understood via the anomalous spectral function.</p
    corecore