127 research outputs found

    On gravitational interactions for massive higher spins in AdS3AdS_3

    Full text link
    In this paper we investigate gravitational interactions of massive higher spin fields in three dimensional AdSAdS space with arbitrary value of cosmological constant including flat Minkowski space. We use frame-like gauge description for such massive fields adopted to three-dimensional case. At first, we carefully analyze the procedure of switching on gravitational interactions in the linear approximation on the example of massive spin-3 field and then proceed with the generalization to the case of arbitrary integer spin field. As a result we construct a cubic interaction vertex linear in spin-2 field and quadratic in higher spin field on AdS3AdS_3 background. As in the massless case the vertex does not contain any higher derivative corrections to the Lagrangian and/or gauge transformations. Thus, even after switching on gravitational interactions, one can freely consider any massless or partially massless limits as well as the flat one.Comment: 21 pages. Some clarifications and 1 new reference added. Version to appear in the J.Phys.A special volume on "Higher Spin Theories and AdS/CFT" edited by Matthias Gaberdiel and Mikhail Vasilie

    Lagrangian Formulation for Free Mixed-Symmetry Bosonic Gauge Fields in (A)dS(d)

    Full text link
    Covariant Lagrangian formulation for free bosonic massless fields of arbitrary mixed-symmetry type in (A)dS(d) space-time is presented. The analysis is based on the frame-like formulation of higher-spin field dynamics [1] with higher-spin fields described as p-forms taking values in appropriate modules of the (A)dS(d). The problem of finding free field action is reduced to the analysis of an appropriate differential complex, with the derivation Q associated with the variation of the action. The constructed action exhibits additional gauge symmetries in the flat limit in agreement with the general structure of gauge symmetries for mixed-symmetry fields in Minkowski and (A)dS(d) spaces.Comment: 17 pages, v2: clarifications added, misprints corrected; v3: minor changes, typos correcte

    Mixed-symmetry massive fields in AdS(5)

    Full text link
    Free mixed-symmetry arbitrary spin massive bosonic and fermionic fields propagating in AdS(5) are investigated. Using the light-cone formulation of relativistic dynamics we study bosonic and fermionic fields on an equal footing. Light-cone gauge actions for such fields are constructed. Various limits of the actions are discussed.Comment: v3: 24 pages, LaTeX-2e; typos corrected, footnote 7 and 2 references added, published in Class. Quantum Gra

    Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma

    Full text link
    We investigate photoluminescence from a high-density electron-hole plasma in semiconductor quantum wells created via intense femtosecond excitation in a strong perpendicular magnetic field, a fully-quantized and tunable system. At a critical magnetic field strength and excitation fluence, we observe a clear transition in the band-edge photoluminescence from omnidirectional output to a randomly directed but highly collimated beam. In addition, changes in the linewidth, carrier density, and magnetic field scaling of the PL spectral features correlate precisely with the onset of random directionality, indicative of cooperative recombination from a high density population of free carriers in a semiconductor environment

    BRST approach to Lagrangian formulation of bosonic totally antisymmeric tensor fields in curved space

    Full text link
    We apply the BRST approach, previously developed for higher spin field theories, to gauge invariant Lagrangian construction for antisymmetric massive and massless bosonic fields in arbitrary d-dimensional curved space. The obtained theories are reducible gauge models both in massless and massive cases and the order of reducibility grows with the value of the rank of the antisymmetric field. In both the cases the Lagrangians contain the sets of auxiliary fields and possess more rich gauge symmetry in comparison with standard Lagrangian formulation for the antisymmetric fields. This serves additional demonstration of universality of the BRST approach for Lagrangian constructions in various field models.Comment: 12 page

    Massive Gravity on de Sitter and Unique Candidate for Partially Massless Gravity

    Full text link
    We derive the decoupling limit of Massive Gravity on de Sitter in an arbitrary number of space-time dimensions d. By embedding d-dimensional de Sitter into d+1-dimensional Minkowski, we extract the physical helicity-1 and helicity-0 polarizations of the graviton. The resulting decoupling theory is similar to that obtained around Minkowski. We take great care at exploring the partially massless limit and define the unique fully non-linear candidate theory that is free of the helicity-0 mode in the decoupling limit, and which therefore propagates only four degrees of freedom in four dimensions. In the latter situation, we show that a new Vainshtein mechanism is at work in the limit m^2\to 2 H^2 which decouples the helicity-0 mode when the parameters are different from that of partially massless gravity. As a result, there is no discontinuity between massive gravity and its partially massless limit, just in the same way as there is no discontinuity in the massless limit of massive gravity. The usual bounds on the graviton mass could therefore equivalently well be interpreted as bounds on m^2-2H^2. When dealing with the exact partially massless parameters, on the other hand, the symmetry at m^2=2H^2 imposes a specific constraint on matter. As a result the helicity-0 mode decouples without even the need of any Vainshtein mechanism.Comment: 30 pages. Some clarifications and references added. New subsection 'Symmetry and Counting in the Full Theory' added. New appendix 'St\"uckelberg fields in the Na\"ive approach' added. Matches version published in JCA
    corecore