18,900 research outputs found
Fitting Effective Diffusion Models to Data Associated with a "Glassy Potential": Estimation, Classical Inference Procedures and Some Heuristics
A variety of researchers have successfully obtained the parameters of low
dimensional diffusion models using the data that comes out of atomistic
simulations. This naturally raises a variety of questions about efficient
estimation, goodness-of-fit tests, and confidence interval estimation. The
first part of this article uses maximum likelihood estimation to obtain the
parameters of a diffusion model from a scalar time series. I address numerical
issues associated with attempting to realize asymptotic statistics results with
moderate sample sizes in the presence of exact and approximated transition
densities. Approximate transition densities are used because the analytic
solution of a transition density associated with a parametric diffusion model
is often unknown.I am primarily interested in how well the deterministic
transition density expansions of Ait-Sahalia capture the curvature of the
transition density in (idealized) situations that occur when one carries out
simulations in the presence of a "glassy" interaction potential. Accurate
approximation of the curvature of the transition density is desirable because
it can be used to quantify the goodness-of-fit of the model and to calculate
asymptotic confidence intervals of the estimated parameters. The second part of
this paper contributes a heuristic estimation technique for approximating a
nonlinear diffusion model. A "global" nonlinear model is obtained by taking a
batch of time series and applying simple local models to portions of the data.
I demonstrate the technique on a diffusion model with a known transition
density and on data generated by the Stochastic Simulation Algorithm.Comment: 30 pages 10 figures Submitted to SIAM MMS (typos removed and slightly
shortened
Delayed soft X-ray emission lines in the afterglow of GRB 030227
Strong, delayed X-ray line emission is detected in the afterglow of GRB
030227, appearing near the end of the XMM-Newton observation, nearly twenty
hours after the burst. The observed flux in the lines, not simply the
equivalent width, sharply increases from an undetectable level (<1.7e-14
erg/cm^2/s, 3 sigma) to 4.1e-14 erg/cm^2/s in the final 9.7 ks. The line
emission alone has nearly twice as many detected photons as any previous
detection of X-ray lines. The lines correspond well to hydrogen and/or
helium-like emission from Mg, Si, S, Ar and Ca at a redshift z=1.39. There is
no evidence for Fe, Co or Ni--the ultimate iron abundance must be less than a
tenth that of the lighter metals. If the supernova and GRB events are nearly
simultaneous there must be continuing, sporadic power output after the GRB of a
luminosity >~5e46 erg/s, exceeding all but the most powerful quasars.Comment: Submitted to ApJL. 14 pages, 3 figures with AASLaTe
Tur\'an Graphs, Stability Number, and Fibonacci Index
The Fibonacci index of a graph is the number of its stable sets. This
parameter is widely studied and has applications in chemical graph theory. In
this paper, we establish tight upper bounds for the Fibonacci index in terms of
the stability number and the order of general graphs and connected graphs.
Tur\'an graphs frequently appear in extremal graph theory. We show that Tur\'an
graphs and a connected variant of them are also extremal for these particular
problems.Comment: 11 pages, 3 figure
Finite element analysis of stress distribution and the effects of geometry in a laser-generated single-stage ceramic tile grout seal using ANSYS
Optimisation of the geometry (curvature of the vitrified enamel layer) of a laser-generated single-stage ceramic tile grout seal has carried out with a finite element (FE) model. The overall load bearing capacities and load-displacement plots of three selected geometries were determined experimentally by the indentation technique. Simultaneously, a FE model was developed utilising the commercial ANSYS package to simulate the indentation. Although the load-displacement plots generated by the FE model consistently displayed stiffer identities than the experimentally obtained results, there was reasonably close agreement between the two sets of results. Stress distribution profiles of the three FE models at failure loads were analysed and correlated so as to draw an implication on the prediction of a catastrophic failure through an analysis of FE-generated stress distribution profiles. It was observed that although increased curvatures of the vitrified enamel layer do enhance the overall load-bearing capacity of the single-stage ceramic tile grout seal and bring about a lower nominal stress, there is a higher build up in stress concentration at the apex that would inevitably reduce the load-bearing capacity of the enamel glaze. Consequently, the optimum geometry of the vitrified enamel layer was determined to be flat
A repulsive reference potential reproducing the dynamics of a liquid with attractions
A well-known result of liquid state theory is that the structure of dense
fluids is mainly determined by repulsive forces. The WCA potential, which cuts
intermolecular potentials at their minima, is therefore often used as a
reference. However, this reference gives quite wrong results for the viscous
dynamics of the Kob-Andersen binary Lennard-Jones liquid [Berthier and Tarjus,
Phys. Rev. Lett. 103, 170601 (2009)]. We show that repulsive inverse-power law
potentials provide a useful reference for this liquid by reproducing its
structure, dynamics, and isochoric heat capacity
Theoretical study of kinks on screw dislocation in silicon
Theoretical calculations of the structure, formation and migration of kinks
on a non-dissociated screw dislocation in silicon have been carried out using
density functional theory calculations as well as calculations based on
interatomic potential functions. The results show that the structure of a
single kink is characterized by a narrow core and highly stretched bonds
between some of the atoms. The formation energy of a single kink ranges from
0.9 to 1.36 eV, and is of the same order as that for kinks on partial
dislocations. However, the kinks migrate almost freely along the line of an
undissociated dislocation unlike what is found for partial dislocations. The
effect of stress has also been investigated in order to compare with previous
silicon deformation experiments which have been carried out at low temperature
and high stress. The energy barrier associated with the formation of a stable
kink pair becomes as low as 0.65 eV for an applied stress on the order of 1
GPa, indicating that displacements of screw dislocations likely occur via
thermally activated formation of kink pairs at room temperature
Einstein-Weyl structures and Bianchi metrics
We analyse in a systematic way the (non-)compact four dimensional
Einstein-Weyl spaces equipped with a Bianchi metric. We show that Einstein-Weyl
structures with a Class A Bianchi metric have a conformal scalar curvature of
constant sign on the manifold. Moreover, we prove that most of them are
conformally Einstein or conformally K\"ahler ; in the non-exact Einstein-Weyl
case with a Bianchi metric of the type or , we show that the
distance may be taken in a diagonal form and we obtain its explicit
4-parameters expression. This extends our previous analysis, limited to the
diagonal, K\"ahler Bianchi case.Comment: Latex file, 12 pages, a minor modification, accepted for publication
in Class. Quant. Gra
ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03
The far-infrared emission from rich galaxy clusters is investigated. Maps
have been obtained by ISO at 60, 100, 135, and 200 microns using the PHT-C
camera. Ground based imaging and spectroscopy were also acquired. Here we
present the results for the cooling flow cluster Sersic 159-03. An infrared
source coincident with the dominant cD galaxy is found. Some off-center sources
are also present, but without any obvious counterparts.Comment: 6 pages, 4 postscript figures, accepted for publication in `Astronomy
and Astrophysics
Anomalous transport in biased ac-driven Josephson junctions: Negative conductances
We investigate classical anomalous electrical transport in a driven,
resistively and capacitively shunted Josephson junction device. Novel transport
phenomena are identified in chaotic regimes when the junction is subjected to
both, a time periodic (ac) and a constant, biasing (dc) current. The dependence
of the voltage across the junction on the dc-current exhibits a rich diversity
of anomalous transport characteristics: In particular, depending on the chosen
parameter regime we can identify so termed absolute negative conductance around
zero dc-bias, the occurrence of negative differential conductance and, after
crossing a zero conductance, the emergence of a negative nonlinear conductance
in the non-equilibrium response regime remote from zero dc-bias.Comment: 7 pages, 5 figure
Strong pressure-energy correlations in van der Waals liquids
Strong correlations between equilibrium fluctuations of the configurational
parts of pressure and energy are found in the Lennard-Jones liquid and other
simple liquids, but not in hydrogen-bonding liquids like methanol and water.
The correlations, that are present also in the crystal and glass phases,
reflect an effective inverse power-law repulsive potential dominating
fluctuations, even at zero and slightly negative pressure. In experimental data
for supercritical Argon, the correlations are found to be approximately 96%.
Consequences for viscous liquid dynamics are discussed.Comment: Phys. Rev. Lett., in pres
- âŠ