116 research outputs found
Khovanov homology is an unknot-detector
We prove that a knot is the unknot if and only if its reduced Khovanov
cohomology has rank 1. The proof has two steps. We show first that there is a
spectral sequence beginning with the reduced Khovanov cohomology and abutting
to a knot homology defined using singular instantons. We then show that the
latter homology is isomorphic to the instanton Floer homology of the sutured
knot complement: an invariant that is already known to detect the unknot.Comment: 124 pages, 13 figure
Gauge theory and Rasmussen's invariant
A previous paper of the authors' contained an error in the proof of a key
claim, that Rasmussen's knot-invariant s(K) is equal to its gauge-theory
counterpart. The original paper is included here together with a corrigendum,
indicating which parts still stand and which do not. In particular, the
gauge-theory counterpart of s(K) is not additive for connected sums.Comment: This version bundles the original submission with a 1-page
corrigendum, indicating the error. The new version of the corrigendum points
out that the invariant is not additive for connected sums. 23 pages, 3
figure
Exact Triangles for SO(3) Instanton Homology of Webs
The SO(3) instanton homology recently introduced by the authors associates a finite-dimensional vector space over the field of two elements to every embedded trivalent graph (or "web"). The present paper establishes a skein exact triangle for this instanton homology, as well as a realization of the octahedral axiom. From the octahedral diagram, one can derive equivalent reformulations of the authors' conjecture that, for planar webs, the rank of the instanton homology is equal to the number of Tait colorings.National Science Foundation (U.S.) (Grant DMS-0805841)National Science Foundation (U.S.) (Grant DMS-1406348
Filtrations on instanton homology
In earlier work of the authors, the Khovanov complex of a knot or link
appeared as the first page in a spectral sequence abutting to the instanton
homology. The quantum and (co)homological gradings on Khovanov homology do not
survive as gradings, but we show that they survive as filtrations.Comment: 40 pages, 4 figures. Revised version, with corrected typos and
extended introductio
- …