58,546 research outputs found

    Affine maps of density matrices

    Full text link
    For quantum systems described by finite matrices, linear and affine maps of matrices are shown to provide equivalent descriptions of evolution of density matrices for a subsystem caused by unitary Hamiltonian evolution in a larger system; an affine map can be replaced by a linear map, and a linear map can be replaced by an affine map. There may be significant advantage in using an affine map. The linear map is generally not completely positive, but the linear part of an equivalent affine map can be chosen to be completely positive and related in the simplest possible way to the unitary Hamiltonian evolution in the larger system.Comment: 4 pages, title changed, sentence added, reference update

    Sparticle masses in deflected mirage mediation

    Full text link
    We discuss the sparticle mass patterns that can be realized in deflected mirage mediation scenario of supersymmetry breaking, in which the moduli, anomaly, and gauge mediations all contribute to the MSSM soft parameters. Analytic expression of low energy soft parameters and also the sfermion mass sum rules are derived, which can be used to interpret the experimentally measured sparticle masses within the framework of the most general mixed moduli-gauge-anomaly mediation. Phenomenological aspects of some specific examples are also discussed.Comment: 43 pages, 17 figures, references adde

    Gaugino and Scalar Masses in the Landscape

    Get PDF
    In this letter we demonstrate the genericity of suppressed gaugino masses M_a \sim m_{3/2}/ln(M_P/m_{3/2}) in the IIB string landscape, by showing that this relation holds for D7-brane gauginos whenever the associated modulus is stabilised by nonperturbative effects. Although m_{3/2} and M_a take many different values across the landscape, the above small mass hierarchy is maintained. We show that it is valid for models with an arbitrary number of moduli and applies to both the KKLT and exponentially large volume approaches to Kahler moduli stabilisation. In the latter case we explicitly calculate gaugino and moduli masses for compactifications on the two-modulus Calabi-Yau P^4_[1,1,1,6,9]. In the large-volume scenario we also show that soft scalar masses are approximately universal with m_i^2 \sim m_{3/2}^2 (1 + \epsilon_i), with the non-universality parametrised by \epsilon_i \sim 1/ln (M_P/m_{3/2})^2 \sim 1/1000. We briefly discuss possible phenomenological implications of our results.Comment: 15 pages, JHEP style; v2. reference adde

    Sudden death of effective entanglement

    Full text link
    Sudden death of entanglement is a well-known effect resulting from the finite volume of separable states. We study the case when the observer has a limited measurement capability and analyse the effective entanglement, i.e. entanglement minimized over the output data. We show that in the well defined system of two quantum dots monitored by single electron transistors, one may observe a sudden death of effective entanglement when real, physical entanglement is still alive. For certain measurement setups, this occurs even for initial states for which sudden death of physical entanglement is not possible at all. The principles of the analysis may be applied to other analogous scenarios, such as etimation of the parameters arising from quantum process tomography.Comment: final version, 5 pages, 3 figure

    Four-Dimensional Effective Supergravity and Soft Terms in M-Theory

    Get PDF
    We provide a simple macroscopic analysis of the four-dimensional effective supergravity of the Ho\v{r}ava-Witten M-theory which is expanded in powers of Îș2/3/ρV1/3\kappa^{2/3}/\rho V^{1/3} and Îș2/3ρ/V2/3\kappa^{2/3}\rho/V^{2/3} where Îș2\kappa^2, VV and ρ\rho denote the eleven-dimensional gravitational coupling, the Calabi-Yau volume and the eleventh length respectively. Possible higher order terms in the K\"ahler potential are identified and matched with the heterotic string corrections. In the context of this M-theory expansion, we analyze the soft supersymmetry-breaking terms under the assumption that supersymmetry is spontaneously broken by the auxiliary components of the bulk moduli superfields. It is examined how the pattern of soft terms changes when one moves from the weakly coupled heterotic string limit to the M-theory limit.Comment: Latex, 23 pages, 3 figures. References are added and the discussion of the M-theory expansion parameters is enlarge

    String or M theory axion as a quintessence

    Get PDF
    A slow-rolling scalar field (Q≡Q\equiv Quintessence) with potential energy VQ∌(3×10−3eV)4V_Q\sim (3\times 10^{-3} {\rm eV})^4 has been proposed as the origin of accelerating universe at present. We investigate the effective potential of QQ in the framework of supergravity model including the quantum corrections induced by generic (nonrenormalizable) couplings of QQ to the gauge and charged matter multiplets. It is argued that the K\"ahler potential, superpotential and gauge kinetic functions of the underlying supergravity model are required to be invariant under the variation of QQ with an extremely fine accuracy in order to provide a working quintessence potential. Applying these results for string or MM-theory, we point out that the heterotic MM-theory or Type I string axion can be a plausible candidate for quintessence if (i) it does not couple to the instanton number of gauge interactions not weaker than those of the standard model and (ii) the modulus partner Re(Z){\rm Re}(Z) of the periodic quintessence axion Im(Z)≡Im(Z)+1{\rm Im}(Z)\equiv {\rm Im}(Z)+1 has a large VEV: Re(Z)∌12πln⁥(m3/22MPlanck2/VQ){\rm Re}(Z)\sim \frac{1}{2\pi}\ln(m_{3/2}^2 M_{Planck}^2/V_Q). It is stressed that such a large Re(Z){\rm Re}(Z) gives the gauge unification scale at around the phenomenologically favored value 3×10163\times 10^{16} GeV. To provide an accelerating universe, the quintessence axion should be at near the top of its effective potential at present, which requires a severe fine tuning of the initial condition of QQ and Q˙\dot{Q} in the early universe. We discuss a late time inflation scenario based on the modular and CP invariance of the moduli effective potential, yielding the required initial condition in a natural manner if the K\"ahler metric of the quintessence axion superfield receives a sizable nonperturbative contribution.Comment: 23 pages, 3 figures, version to be published at Phys. Rev.

    Relation between Kitaev magnetism and structure in α\alpha-RuCl3_3

    Full text link
    Raman scattering has been employed to investigate lattice and magnetic excitations of the honeycomb Kitaev material α\alpha-RuCl3_3 and its Heisenberg counterpart CrCl3_3. Our phonon Raman spectra give evidence for a first-order structural transition from a monoclinic to a rhombohedral structure for both compounds. Significantly, only α\alpha-RuCl3_3 features a large thermal hysteresis, consistent with the formation of a wide phase of coexistence. In the related temperature interval of 70−17070-170 K, we observe a hysteretic behavior of magnetic excitations as well. The stronger magnetic response in the rhombohedral compared to the monoclinic phase evidences a coupling between the crystallographic structure and low-energy magnetic response. Our results demonstrate that the Kitaev magnetism concomitant with fractionalized excitations is susceptible to small variations of bonding geometry.Comment: 9 pages, 8 figures, To appear in PR

    Dynamical solution to the Ό\mu problem at TeV scale

    Get PDF
    We introduce a new confining force (\mu-color) at TeV scale to dynamically generate a supersymmetry preserving mass scale which would replace the \mu parameter in the minimal supersymmetric standard model (MSSM). We discuss the Higgs phenomenology and also the pattern of soft supersymmetry breaking parameters allowing the correct electroweak symmetry breaking within the \mu-color model, which have quite distinctive features from the MSSM and also from other generalizations of the MSSM.Comment: 12 pages, REVte
    • 

    corecore