6,980 research outputs found
Theory of spin-polarized scanning tunneling microscopy applied to local spins
We provide a theory for scanning tunneling microscopy and spectroscopy using
a spin-polarized tip. It it shown that the tunneling conductance can be
partitioned into three separate contributions, a background conductance which
is independent of the local spin, a dynamical conductance which is proportional
to the local spin moment, and a conductance which is proportional to the noise
spectrum of the local spin interactions. The presented theory is applicable to
setups with magnetic tip and substrate in non-collinear arrangement, as well as
for non-magnetic situations. The partitioning of the tunneling current suggests
a possibility to extract the total spin moment of the local spin from the
dynamical conductance. The dynamical conductance suggests a possibility to
generate very high frequency spin-dependent ac currents and/or voltages. We
also propose a measurement of the dynamical conductance that can be used to
determine the character of the effective exchange interaction between
individual spins in clusters. The third contribution to the tunneling current
is associated with the spin-spin correlations induced by the exchange
interaction between the local spin moment and the tunneling electrons. We
demonstrate how this term can be used in the analysis of spin excitations
recorded in conductance measurements. Finally, we propose to use spin-polarized
scanning tunneling microscopy for detailed studies of the spin excitation
spectrum.Comment: 12 pages, 4 figure, updated to match the published version, to appear
in the Phys. Rev.
Atomistic spin dynamics of the CuMn spin glass alloy
We demonstrate the use of Langevin spin dynamics for studying dynamical
properties of an archetypical spin glass system. Simulations are performed on
CuMn (20% Mn) where we study the relaxation that follows a sudden quench of the
system to the low temperature phase. The system is modeled by a Heisenberg
Hamiltonian where the Heisenberg interaction parameters are calculated by means
of first-principles density functional theory. Simulations are performed by
numerically solving the Langevin equations of motion for the atomic spins. It
is shown that dynamics is governed, to a large degree, by the damping parameter
in the equations of motion and the system size. For large damping and large
system sizes we observe the typical aging regime.Comment: 18 pages, 9 figure
Universal distribution of magnetic anisotropy of impurities in ordered and disordered nano-grains
We examine the distribution of the magnetic anisotropy (MA) experienced by a
magnetic impurity embedded in a metallic nano-grain. As an example of a generic
magnetic impurity with partially filled -shell, we study the case of
impurities imbedded into ordered and disordered Au nano-grains, described in
terms of a realistic band structure. Confinement of the electrons induces a
magnetic anisotropy that is large, and can be characterized by 5 real
parameters, coupling to the quadrupolar moments of the spin. In ordered
(spherical) nano-grains, these parameters exhibit symmetrical structures and
reflect the symmetry of the underlying lattice, while for disordered grains
they are randomly distributed and, - for stronger disorder, - their
distribution is found to be characterized by random matrix theory. As a result,
the probability of having small magnetic anisotropies is suppressed below
a characteristic scale , which we predict to scale with the number of
atoms as . This gives rise to anomalies in the
specific heat and the susceptibility at temperatures and
produces distinct structures in the magnetic excitation spectrum of the
clusters, that should be possible to detect experimentally
Simulation of hydrogenated graphene Field-Effect Transistors through a multiscale approach
In this work, we present a performance analysis of Field Effect Transistors
based on recently fabricated 100% hydrogenated graphene (the so-called
graphane) and theoretically predicted semi-hydrogenated graphene (i.e.
graphone). The approach is based on accurate calculations of the energy bands
by means of GW approximation, subsequently fitted with a three-nearest neighbor
(3NN) sp3 tight-binding Hamiltonian, and finally used to compute ballistic
transport in transistors based on functionalized graphene. Due to the large
energy gap, the proposed devices have many of the advantages provided by
one-dimensional graphene nanoribbon FETs, such as large Ion and Ion/Ioff
ratios, reduced band-to-band tunneling, without the corresponding disadvantages
in terms of prohibitive lithography and patterning requirements for circuit
integration
Dynamics of diluted magnetic semiconductors from atomistic spin dynamics simulations: Mn doped GaAs as a case study
The dynamical behavior of the magnetism of diluted magnetic semiconductors
(DMS) has been investigated by means of atomistic spin dynamics simulations.
The conclusions drawn from the study are argued to be general for DMS systems
in the low concentration limit, although all simulations are done for 5%
Mn-doped GaAs with various concentrations of As antisite defects. The
magnetization curve, , and the Curie temperature have been
calculated, and are found to be in good correspondence to results from Monte
Carlo simulations and experiments. Furthermore, equilibrium and non-equilibrium
behavior of the magnetic pair correlation function have been extracted. The
dynamics of DMS systems reveals a substantial short ranged magnetic order even
at temperatures at or above the ordering temperature, with a non-vanishing pair
correlation function extending up to several atomic shells. For the high As
antisite concentrations the simulations show a short ranged anti-ferromagnetic
coupling, and a weakened long ranged ferromagnetic coupling. For sufficiently
large concentrations we do not observe any long ranged ferromagnetic
correlation. A typical dynamical response shows that starting from a random
orientation of moments, the spin-correlation develops very fast ( 1ps)
extending up to 15 atomic shells. Above 10 ps in the simulations, the
pair correlation is observed to extend over some 40 atomic shells. The
autocorrelation function has been calculated and compared with ferromagnets
like bcc Fe and spin-glass materials. We find no evidence in our simulations
for a spin-glass behaviour, for any concentration of As antisites. Instead the
magnetic response is better described as slow dynamics, at least when compared
to that of a regular ferromagnet like bcc Fe.Comment: 24 pages, 15 figure
Fe/V and Fe/Co (001) superlattices: growth, anisotropy, magnetisation and magnetoresistance
Some physical properties of bcc Fe/V and Fe/Co (001) superlattices are
reviewed. The dependence of the magnetic anisotropy on the in-plane strain
introduced by the lattice mismatch between Fe and V is measured and compared to
a theoretical derivation. The dependence of the magnetic anisotropy (and
saturation magnetisation) on the layer thickness ratio Fe/Co is measured and a
value for the anisotropy of bcc Co is derived from extrapolation. The
interlayer exchange coupling of Fe/V superlattices is studied as a function of
the layer thickness V (constant Fe thickness) and layer thickness of Fe
(constant V thickness). A region of antiferromagnetic coupling and GMR is found
for V thicknesses 12-14 monolayers. However, surprisingly, a 'cutoff' of the
antiferromagnetic coupling and GMR is found when the iron layer thickness
exceeds about 10 monolayers.Comment: Proceedings of the International Symposium on Advanced Magnetic
Materials (ISAMM'02), October 2-4, 2002, Halong Bay, Vietnam. REVTeX style; 4
pages, 5 figure
Electron correlations in MnGaAs as seen by resonant electron spectroscopy and dynamical mean field theory
After two decades from the discovery of ferromagnetism in Mn-doped GaAs, its
origin is still debated, and many doubts are related to the electronic
structure. Here we report an experimental and theoretical study of the valence
electron spectrum of Mn-doped GaAs. The experimental data are obtained through
the differences between off- and on-resonance photo-emission data. The
theoretical spectrum is calculated by means of a combination of
density-functional theory in the local density approximation and dynamical
mean-field theory (LDA+DMFT), using exact diagonalisation as impurity solver.
Theory is found to accurately reproduce measured data, and illustrates the
importance of correlation effects. Our results demonstrate that the Mn states
extend over a broad range of energy, including the top of the valence band, and
that no impurity band splits off from the valence band edge, while the induced
holes seem located primarily around the Mn impurity.Comment: 5 pages, 4 figure
- …