94,778 research outputs found

    Nonlinear parallel momentum transport in strong turbulence

    Full text link
    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the \emph{nonlinear} momentum flux-. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas {\bf 18}, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong turbulence is calculated by using three dimensional Hasegawa-Mima equation. It is shown that nonlinear diffusivity is smaller than quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so could be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress

    Intrinsic rotation drive by collisionless trapped electron mode turbulence

    Full text link
    Both the parallel residual stress and parallel turbulent acceleration driven by electrostatic collisionsless trapped electron mode (CTEM) turbulence are calculated analytically using gyrokinetic theory. Quasilinear results show that the parallel residual stress contributes an outward flux of co-current rotation for normal magnetic shear and turbulence intensity profile increasing outward. This may induce intrinsic counter-current rotation or flattening of the co-current rotation profile. The parallel turbulent acceleration driven by CTEM turbulence vanishes, due to the absence of a phase shift between density fluctuation and ion pressure fluctuation. This is different from the case of ion temperature gradient (ITG) turbulence, for which the turbulent acceleration can provide co-current drive for normal magnetic shear and turbulence intensity profile increasing outward. Its order of magnitude is predicted to be the same as that of the divergence of the residual stress [Lu Wang and P.H. Diamond, Phys. Rev. Lett. {\bf 110}, 265006 (2013)]. A possible connection of these theoretical results to experimental observations of electron cyclotron heating effects on toroidal rotation is discussed.Comment: Accepted by Phys. Plasma

    Domain wall switching: optimizing the energy landscape

    Full text link
    It has recently been suggested that exchange spring media offer a way to increase media density without causing thermal instability (superparamagnetism), by using a hard and a soft layer coupled by exchange. Victora has suggested a figure of merit xi = 2 E_b/mu_0 m_s H_sw, the ratio of the energy barrier to that of a Stoner-Wohlfarth system with the same switching field, which is 1 for a Stoner-Wohlfarth (coherently switching) particle and 2 for an optimal two-layer composite medium. A number of theoretical approaches have been used for this problem (e.g., various numbers of coupled Stoner-Wohlfarth layers and continuum micromagnetics). In this paper we show that many of these approaches can be regarded as special cases or approximations to a variational formulation of the problem, in which the energy is minimized for fixed magnetization. The results can be easily visualized in terms of a plot of the energy as a function of magnetic moment m_z, in which both the switching field [the maximum slope of E(m_z)] and the stability (determined by the energy barrier E_b) are geometrically visible. In this formulation we can prove a rigorous limit on the figure of merit xi, which can be no higher than 4. We also show that a quadratic anistropy suggested by Suess et al comes very close to this limit.Comment: Acccepted for proceedings of Jan. 2007 MMM Meeting, paper BE-0

    Hydrogen Embrittlement of Aluminum: the Crucial Role of Vacancies

    Full text link
    We report first-principles calculations which demonstrate that vacancies can combine with hydrogen impurities in bulk aluminum and play a crucial role in the embrittlement of this prototypical ductile solid. Our studies of hydrogen-induced vacancy superabundant formation and vacancy clusterization in aluminum lead to the conclusion that a large number of H atoms (up to twelve) can be trapped at a single vacancy, which over-compensates the energy cost to form the defect. In the presence of trapped H atoms, three nearest-neighbor single vacancies which normally would repel each other, aggregate to form a trivacancy on the slip plane of Al, acting as embryos for microvoids and cracks and resulting in ductile rupture along the these planes.Comment: To appear in Phys. Rev. Let

    Methods of calculation of a friction coefficient: Application to the nanotubes

    Full text link
    In this work we develop theoretical and numerical methods of calculation of a dynamic friction coefficient. The theoretical method is based on an adiabatic approximation which allows us to express the dynamic friction coefficient in terms of the time integral of the autocorrelation function of the force between both sliding objects. The motion of the objects and the autocorrelation function can be numerically calculated by molecular-dynamics simulations. We have successfully applied these methods to the evaluation of the dynamic friction coefficient of the relative motion of two concentric carbon nanotubes. The dynamic friction coefficient is shown to increase with the temperature.Comment: 4 pages, 6 figure

    Bifurcations and Chaos in Time Delayed Piecewise Linear Dynamical Systems

    Full text link
    We reinvestigate the dynamical behavior of a first order scalar nonlinear delay differential equation with piecewise linearity and identify several interesting features in the nature of bifurcations and chaos associated with it as a function of the delay time and external forcing parameters. In particular, we point out that the fixed point solution exhibits a stability island in the two parameter space of time delay and strength of nonlinearity. Significant role played by transients in attaining steady state solutions is pointed out. Various routes to chaos and existence of hyperchaos even for low values of time delay which is evidenced by multiple positive Lyapunov exponents are brought out. The study is extended to the case of two coupled systems, one with delay and the other one without delay.Comment: 34 Pages, 14 Figure

    Ghost field realizations of the spinor W2,sW_{2,s} strings based on the linear W(1,2,s) algebras

    Full text link
    It has been shown that certain W algebras can be linearized by the inclusion of a spin-1 current. This Provides a way of obtaining new realizations of the W algebras. In this paper, we investigate the new ghost field realizations of the W(2,s)(s=3,4) algebras, making use of the fact that these two algebras can be linearized. We then construct the nilpotent BRST charges of the spinor non-critical W(2,s) strings with these new realizations.Comment: 10 pages, no figure
    • …
    corecore