15,121 research outputs found
Optical surface waves in periodic layered medium grown by liquid phase epitaxy
Optical surface waves propagating along the surface of a multilayer stack have been observed. The multilayer stack is grown by liquid phase epitaxy. The transverse intensity distribution measured is found to agree with our theoretical calculation
A study of topologies and protocols for fiber optic local area network
The emergence of new applications requiring high data traffic necessitates the development of high speed local area networks. Optical fiber is selected as the transmission medium due to its inherent advantages over other possible media and the dual optical bus architecture is shown to be the most suitable topology. Asynchronous access protocols, including token, random, hybrid random/token, and virtual token schemes, are developed and analyzed. Exact expressions for insertion delay and utilization at light and heavy load are derived, and intermediate load behavior is investigated by simulation. A new tokenless adaptive scheme whose control depends only on the detection of activity on the channel is shown to outperform round-robin schemes under uneven loads and multipacket traffic and to perform optimally at light load. An approximate solution to the queueing delay for an oscillating polling scheme under chaining is obtained and results are compared with simulation. Solutions to the problem of building systems with a large number of stations are presented, including maximization of the number of optical couplers, and the use of passive star/bus topologies, bridges and gateways
Scintillation observations of satellite signals
Scintillation observations of satellite signal
Coherent control of microwave pulse storage in superconducting circuits
Coherent pulse control for quantum memory is viable in the optical domain but
nascent in microwave quantum circuits. We show how to realize coherent storage
and on-demand pulse retrieval entirely within a superconducting circuit by
exploiting and extending existing electromagnetically induced transparency
technology in superconducting quantum circuits. Our scheme employs a linear
array of superconducting artificial atoms coupled to a microwave transmission
line.Comment: 13 pages, 4 figures and some supplementary materia
Turbine vane coolant flow variations and calculated effects on metal temperatures
Seventy-two air-cooled turbine vanes were tested to determine coolant flow variations among the vanes. Calculations were made to estimate the effect of measured coolant flow variations on local vane metal temperatures. The calculations were based on the following assumed operating conditions: turbine inlet temperature, 1700 K (2600 F); turbine inlet pressure, 31 N/sq cm (45 psia); coolant inlet temperature, 811 K (1000 F); and total coolant to gas flow ratio, 0.065. Variations of total coolant flow were not large (about 10 percent from the arithmetic mean) for all 72 vanes, but variations in local coolant flows were large. The local coolant flow variations ranged from 8 to 75 percent, and calculated metal temperature variations ranged from 8 to 60 K (15 to 180 F)
Effect of milling and leaching on the structure of sintered silicon
Sintering was performed in He for 16 hours at 1200, 1250, and 1300 C. Compacts of as-received Si did not densify during sintering. Milling reduced the average particle size to below 0.5 micrometer and enhanced densification (1.75 g/cc). Leaching milled Si further enhanced densification (1.90 g/cc max.) and decreased structural coarsening. After sintering, the structure of the milled and leached powder compacts appears favorable for the production of reaction bonded silicon nitride
Effects of lattice distortion and Jahn–Teller coupling on the magnetoresistance of La0.7Ca0.3MnO3 and La0.5Ca0.5CoO3 epitaxial films
Studies of La0.7Ca0.3MnO3 epitaxial films on substrates with a range of lattice constants reveal two dominant contributions to the occurrence of colossal negative magnetoresistance (CMR) in these manganites: at high temperatures (T → TC, TC being the Curie temperature), the magnetotransport properties are predominantly determined by the conduction of lattice polarons, while at low temperatures (T ≪ TC/, the residual negative magnetoresistance is correlated with the substrate-induced lattice distortion which incurs excess magnetic domain wall scattering. The importance of lattice polaron conduction associated with the presence of Jahn–Teller coupling in the manganites is further verified by comparing the manganites with epitaxial films of another ferromagnetic perovskite, La0.5Ca0.5CoO3. Regardless of the differences in the substrate-induced lattice distortion, the cobaltite films exhibit much smaller negative magnetoresistance, which may be attributed to the absence of Jahn–Teller coupling and the high electron mobility that prevents the formation of lattice polarons. We therefore suggest that lattice polaron conduction associated with the Jahn–Teller coupling is essential for the occurrence of CMR, and that lattice distortion further enhances the CMR effects in the manganites
Computation of full-coverage film-cooled airfoil temperatures by two methods and comparison with high heat flux data
Two methods were used to calculate the heat flux to full-coverage film cooled airfoils and, subsequently, the airfoil wall temperatures. The calculated wall temperatures were compared to measured temperatures obtained in the Hot Section Facility operating at real engine conditions. Gas temperatures and pressures up to 1900 K and 18 atm with a Reynolds number up to 1.9 million were investigated. Heat flux was calculated by the convective heat transfer coefficient adiabatic wall method and by the superposition method which incorporates the film injection effects in the heat transfer coefficient. The results of the comparison indicate the first method can predict the experimental data reasonably well. However, superposition overpredicted the heat flux to the airfoil without a significant modification of the turbulent Prandtl number. The results suggest that additional research is required to model the physics of full-coverage film cooling where there is significant temperature/density differences between the gas and the coolant
Power system applications of fiber optic sensors
This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described
- …