40 research outputs found

    Risk of intracranial haemorrhage and ischaemic stroke after convexity subarachnoid haemorrhage in cerebral amyloid angiopathy: international individual patient data pooled analysis

    Get PDF
    OBJECTIVE: To investigate the frequency, time-course and predictors of intracerebral haemorrhage (ICH), recurrent convexity subarachnoid haemorrhage (cSAH), and ischemic stroke after cSAH associated with cerebral amyloid angiopathy (CAA). METHODS: We performed a systematic review and international individual patient-data pooled analysis in patients with cSAH associated with probable or possible CAA diagnosed on baseline MRI using the modified Boston criteria. We used Cox proportional hazards models with a frailty term to account for between-cohort differences. RESULTS: We included 190 patients (mean age 74.5 years; 45.3% female) from 13 centers with 385 patient-years of follow-up (median 1.4 years). The risks of each outcome (per patient-year) were: ICH 13.2% (95% CI 9.9-17.4); recurrent cSAH 11.1% (95% CI 7.9-15.2); combined ICH, cSAH, or both 21.4% (95% CI 16.7-26.9), ischemic stroke 5.1% (95% CI 3.1-8) and death 8.3% (95% CI 5.6-11.8). In multivariable models, there is evidence that patients with probable CAA (compared to possible CAA) had a higher risk of ICH (HR 8.45, 95% CI 1.13-75.5, p = 0.02) and cSAH (HR 3.66, 95% CI 0.84-15.9, p = 0.08) but not ischemic stroke (HR 0.56, 95% CI 0.17-1.82, p = 0.33) or mortality (HR 0.54, 95% CI 0.16-1.78, p = 0.31). CONCLUSIONS: Patients with cSAH associated with probable or possible CAA have high risk of future ICH and recurrent cSAH. Convexity SAH associated with probable (vs possible) CAA is associated with increased risk of ICH, and cSAH but not ischemic stroke. Our data provide precise risk estimates for key vascular events after cSAH associated with CAA which can inform management decisions

    Widespread Gene Conversion of Alpha-2-Fucosyltransferase Genes in Mammals

    Get PDF
    The alpha-2-fucosyltransferases (α2FTs) are enzymes involved in the biosynthesis of α2fucosylated glycan structures. In mammalian genomes, there are three α2FT genes located in tandem—FUT1, FUT2, and Sec1—each contained within a single exon. It has been suggested that these genes originated from two successive duplications, with FUT1 being generated first and FUT2 and Sec1 second. Despite gene conversion being considered the main mechanism of concerted evolution in gene families, previous studies of primates α2FTs failed to detect it, although the occurrence of gene conversion between FUT2 and Sec1 was recently reported in a human allele. The primary aim of our work was to initiate a broader study on the molecular evolution of mammalian α2FTs. Sequence comparison leads us to confirm that the three genes appeared by two rounds of duplication. In addition, we were able to detect multiple gene-conversion events at the base of primates and within several nonprimate species involving FUT2 and Sec1. Gene conversion involving FUT1 and either FUT2 or Sec1 was also detected in rabbit. The extent of gene conversion between the α2FTs genes appears to be species-specific, possibly related to functional differentiation of these genes. With the exception of rabbits, gene conversion was not observed in the region coding the C-terminal part of the catalytic domain. In this region, the number of amino acids that are identical between FUT1 and FUT2, but different in Sec1, is higher than in other parts of the protein. The biologic meaning of this observation may be related to functional constraints

    Foxp3 and Treg cells in HIV-1 infection and immuno-pathogenesis

    Get PDF
    FoxP3+CD4+CD25+ regulatory T (Treg) cells are implicated in a number of pathologic processes including elevated levels in cancers and infectious diseases, and reduced levels in autoimmune diseases. Treg cells are activated to modulate immune responses to avoid over-reactive immunity. However, conflicting findings are reported regarding relative levels of Treg cells during HIV-1 infection and disease progression. The role of Treg cells in HIV-1 diseases (aberrant immune activation) is poorly understood due to lack of a robust model. We summarize here the regulation and function of Foxp3 in Treg cells and in modulating HIV-1 replication. Based on recent findings from SIV/monkey and HIV/humanized mouse models, a model of the dual role of Treg cells in HIV-1 infection and immuno-pathogenesis is discussed

    Roles for retrotransposon insertions in human disease

    Get PDF

    Sequence, evolution and ligand binding properties of mammalian Duffy antigen/receptor for chemokines

    No full text
    The Duffy antigen/receptor for chemokine, DARC, acts as a widely expressed promiscuous chemokine receptor and as the erythrocyte receptor for Plasmodium vivax. To gain insight into the evolution and structure/function relations of DARC, we analyzed the binding of anti-human Fy monoclonal antibodies (mAbs) and human chemokines to red blood cells (RBCs) from 11 nonhuman primates and two nonprimate mammals, and we elucidated the structures of the DARC genes from gorilla, gibbon, baboon, marmoset, tamarin, night monkey and cattle. CXCL-8 and CCL-5 chemokine binding analysis indicated that the promiscuous binding profile characteristic of DARC is conserved across species. Among three mAbs that detected the Fy6 epitope by flow cytometric analysis of human and chimpanzee RBCs, only one reacted with night monkey and squirrel monkey. Only chimpanzee RBCs bound a significant amount of the anti-Fy3 mAb. Fy3 was also poorly detected on RBCs from gorilla, baboon and rhesus monkey, but not from new world monkeys. Alignment of DARC homologous sequences allowed us to construct a phylogenetic tree in which all branchings were in accordance with current knowledge of primate phylogeny. Although DARC was expected to be under strong internal and external selection pressure, in order to maintain chemokine binding and avoid Plasmodium vivax binding, respectively, our present study did not provide arguments in favor of a selection pressure on the extracellular domains involved in ligand specificity. The amino acid variability of DARC-like polypeptides was found to be well correlated with the hydrophylicity indexes, with the highest divergence on the amino-terminal extracellular domain. Analysis of the deduced amino acid sequences highlighted the conservation of some amino acid residues, which should prove to be critical for the structural and functional properties of DARC
    corecore